• 제목/요약/키워드: Climate Chang

검색결과 684건 처리시간 0.021초

미래 기상 시나리오에 대한 편의 보정 방법에 따른 지역 기후변화 영향 평가의 불확실성 (Uncertainty in Regional Climate Change Impact Assessment using Bias-Correction Technique for Future Climate Scenarios)

  • 황세운;허용구;장승우
    • 한국농공학회논문집
    • /
    • 제55권4호
    • /
    • pp.95-106
    • /
    • 2013
  • It is now generally known that dynamical climate modeling outputs include systematic biases in reproducing the properties of atmospheric variables such as, preciptation and temerature. There is thus, general consensus among the researchers about the need of bias-correction process prior to using climate model results especially for hydrologic applications. Among the number of bias-correction methods, distribution (e.g., cumulative distribution fuction, CDF) mapping based approach has been evaluated as one of the skillful techniques. This study investigates the uncertainty of using various CDF mapping-based methods for bias-correciton in assessing regional climate change Impacts. Two different dynamicailly-downscaled Global Circulation Model results (CCSM and GFDL under ARES4 A2 scenario) using Regional Spectial Model for retrospective peiod (1969-2000) and future period (2039-2069) were collected over the west central Florida. Total 12 possible methods (i.e., 3 for developing distribution by each of 4 for estimating biases in future projections) were examined and the variations among the results using different methods were evaluated in various ways. The results for daily temperature showed that while mean and standard deviation of Tmax and Tmin has relatively small variation among the bias-correction methods, monthly maximum values showed as significant variation (~2'C) as the mean differences between the retrospective simulations and future projections. The accuracy of raw preciptiation predictions was much worse than temerature and bias-corrected results appreared to be more significantly influenced by the methodologies. Furthermore the uncertainty of bias-correction was found to be relevant to the performance of climate model (i.e., CCSM results which showed relatively worse accuracy showed larger variation among the bias-correction methods). Concludingly bias-correction methodology is an important sourse of uncertainty among other processes that may be required for cliamte change impact assessment. This study underscores the need to carefully select a bias-correction method and that the approach for any given analysis should depend on the research question being asked.

온실가스 배출량 산정 방법에 따른 N2O 배출량 비교 (Comparison of N2O Emissions by Greenhouse Gas Emission Estimation Method)

  • 강소영;조창상;김승진;강성민;윤현기;전의찬
    • 한국기후변화학회지
    • /
    • 제6권3호
    • /
    • pp.175-184
    • /
    • 2015
  • In this study GC and PAS were used to calculate $N_2O$ concentration of exhaust gas from Wood Chip combustion system. Fuel supplied to the incinerator was collected and analyzed and then the analysis result was used to calculate $N_2O$ emissions. Tier 3 and Tier 4 Method were used to calculate the $N_2O$ emissions. Plant's Specific emission factor of $N_2O$ by Tier 3 Method was 0.35 kg/TJ, while default emission factor of Wood?Wood Waste proposed by 2006 IPCC G/L was 4 kg/TJ. So the $N_2O$ emission factor of this study was 3.65 kg/TJ lower compared to the IPCC G/L. The total emissions calculated by Plant's specific emission factor was 4.22 kg during the measuring period, but by Tier 4 Method it was 7.88 kg. This difference in emissions was caused by the difference of continuous measuring and intermittent sampling. It would be necessary to apply continuous measuring to calculate emissions of $Non-CO_2$ gas whose the density distribution is relatively high. However currently, according to the target management guideline of greenhouse gas and energy, the continuous measuring method to calculate greenhouse gas emission is applied only to $CO_2$. Therefore for reliable greenhouse gas emission calculation it would be necessary to apply continuous measuring to calculate $Non-CO_2$ gas emission.

Determining the correlation between outdoor heatstroke incidence and climate elements in Daegu metropolitan city

  • Kim, Jung Ho;Ryoo, Hyun Wook;Moon, Sungbae;Jang, Tae Chang;Jin, Sang Chan;Mun, You Ho;Do, Byung Soo;Lee, Sam Beom;Kim, Jong-yeon
    • Journal of Yeungnam Medical Science
    • /
    • 제36권3호
    • /
    • pp.241-248
    • /
    • 2019
  • Background: Heatstroke is one of the most serious heat-related illnesses. However, establishing public policies to prevent heatstroke remains a challenge. This study aimed to investigate the most relevant climate elements and their warning criteria to prevent outdoor heatstroke (OHS). Methods: We investigated heatstroke patients from five major hospitals in Daegu metropolitan city, Korea, from June 1 to August 31, 2011 to 2016. We also collected the corresponding regional climate data from Korea Meteorological Administration. We analyzed the relationship between the climate elements and OHS occurrence by logistic regression. Results: Of 70 patients who had heatstroke, 45 (64.3%) experienced it while outdoors. Considering all climate elements, only mean heat index (MHI) was related with OHS occurrence (p=0.019). Therefore, the higher the MHI, the higher the risk for OHS (adjusted odds ratio, 1.824; 95% confidence interval, 1.102-3.017). The most suitable cutoff point for MHI by Youden's index was $30.0^{\circ}C$ (sensitivity, 77.4%; specificity, 73.7%). Conclusion: Among the climate elements, MHI was significantly associated with OHS occurrence. The optimal MHI cutoff point for OHS prevention was $30.0^{\circ}C$.

지자체 기후변화 적응 대책 특성 및 개선 방향 (The Characteristics and Improvement Directions of Regional Climate Change Adaptation Policies in accordance with Damage Cases)

  • 안윤정;강영은;박창석;김호걸
    • 환경영향평가
    • /
    • 제25권4호
    • /
    • pp.296-306
    • /
    • 2016
  • 기후변화에 대한 영향 및 위험은 지역적, 국지적 차원에서 더욱 확장되므로 기후변화에 따른 지역적 영향 및 특성을 반영한 기후변화 적응대책 마련의 필요성이 커지고 있다. 이에 본 연구에서는 기초지자체 적응대책의 분야별 사업 수 및 예산의 특성을 분석하고 피해사례와 비교 검토하여 기후변화 적응대책의 개선방향을 제시하고자 했다. 기초지자체 적응대책 특성 분석을 위해 군집분석을 통하여 지자체 적응대책의 유형별 특성을 파악 했다. 적응대책의 계획이 실제 기후변화로 인한 피해 내용을 잘 반영하고 있는지 검토하기 위하여 과거 24년 동안 지자체별 관측 영향 결과(신문기사 2,565건)와 비교 분석을 수행했다. 군집분석 수행 결과 군집은 4가지 유형으로 구분되었다. 전국 피해 유형으로 재난재해, 건강 부분에서 공통적으로 피해 빈도가 높은 것으로 분석되었으며, 적응계획 또한 재난재해, 건강, 농업, 물 관리 순서로 높은 비율을 보였다. 하지만 피해 사례 반영의 비중과 단기 및 장기 미래에 대한 고려 수준에 따라서 각 군집별로 피해빈도와 적응계획의 특성에서 차이를 보였다. 본 연구의 결과는 향후 기초지자체 특성 및 지역별 실질적 피해에 기반 한 적응대책 마련의 기초자료로 활용될 수 있을 것이라고 판단된다.

전지구 모델(CCSM3)을 이용한 지역기후 모델(MM5)의 역학적 상세화 기법 개발 (Development of a Dynamic Downscaling Method using a General Circulation Model (CCSM3) of the Regional Climate Model (MM5))

  • 최진영;송창근;이재범;홍성철;방철한
    • 한국기후변화학회지
    • /
    • 제2권2호
    • /
    • pp.79-91
    • /
    • 2011
  • 본 연구에서는 기후변화와 대기환경 사이의 통합적 상호작용 연구를 위하여 전 지구규모 기후모델(CCSM3) 결과를 지역 규모 기후모델(MM5)의 초기 및 경계 조건으로 사용할 수 있도록 역학적 상세화(Downscaling) 기법을 개발하였다. 개발된 상세화 기법에서는 위 경도 좌표계로 이루어진 CCSM3 결과를 Lambert-Conformal Arakawa-B 격자 체계로, CCSM3의 hybrid-vertical coordinate를 MM5의 sigma coordinate로 대체하는 과정과 CCSM3 모델 수행 결과와 모델 수행에 필요한 변수들 간의 일치화 과정이 포함된다. 전 지구 규모 모델 결과들이 지역 규모 모델의 입력값으로 역학적 규모 축소되는 과정을 검증하기 위해 공간 분포 및 통계분석을 수행한 결과, 여름철과 겨울철의 기온 및 강수량 패턴이 동아시아 영역 및 한반도 지역에 대해 기존 관측을 이용한 결과와 매우 유사한 패턴을 보였으며, 통계 분석 결과 모델 예측지수가 기온의 경우 0.9 이상의 좋은 값이 나타났으며, 상관성 역시 0.9 수준의 결과를 보여 인터페이스 구축이 성공적으로 수행되었음을 알 수 있다.

CORDEX-EA Phase 2 다중 지역기후모델을 이용한 한반도 미래 극한 기후 전망 (Future Projection of Extreme Climate over the Korean Peninsula Using Multi-RCM in CORDEX-EA Phase 2 Project)

  • 김도현;김진욱;변영화;김태준;김진원;김연희;안중배;차동현;민승기;장은철
    • 대기
    • /
    • 제31권5호
    • /
    • pp.607-623
    • /
    • 2021
  • This study presents projections of future extreme climate over the Korean Peninsula (KP), using bias-corrected data from multiple regional climate model (RCM) simulations in CORDEX-EA Phase 2 project. In order to confirm difference according to degree of greenhouse gas (GHG) emission, high GHG path of SSP5-8.5 and low GHG path of SSP1-2.6 scenario are used. Under SSP5-8.5 scenario, mean temperature and precipitation over KP are projected to increase by 6.38℃ and 20.56%, respectively, in 2081~2100 years compared to 1995~2014 years. Projected changes in extreme climate suggest that intensity indices of extreme temperatures would increase by 6.41℃ to 8.18℃ and precipitation by 24.75% to 33.74%, being bigger increase than their mean values. Both of frequency indices of the extreme climate and consecutive indices of extreme precipitation are also projected to increase. But the projected changes in extreme indices vary regionally. Under SSP1-2.6 scenario, the extreme climate indices would increase less than SSP5-8.5 scenario. In other words, temperature (precipitation) intensity indices would increase 2.63℃ to 3.12℃ (14.09% to 16.07%). And there is expected to be relationship between mean precipitation and warming, which mean precipitation would increase as warming with bigger relationship in northern KP (4.08% ℃-1) than southern KP (3.53% ℃-1) under SSP5-8.5 scenario. The projected relationship, however, is not significant for extreme precipitation. It seems because of complex characteristics of extreme precipitation from summer monsoon and typhoon over KP.

국제적 재난 경감 프레임워크에 대한 연구 (A study of the international disaster risk reduction framework)

  • Lee, ChangYeol;Kim, Taehwan
    • 한국재난정보학회 논문집
    • /
    • 제12권4호
    • /
    • pp.412-421
    • /
    • 2016
  • 지구 온난화로 인한 전 세계적인 기후 변화로 생활 환경이 지속적으로 변화하고 있다. 이러한 기후 변화에 대한 적응과 대비한 IPCC와 UNFCCC를 포함한 많은 국제적 활동이 있다. 또한 UNISDR의 DRR 활동으로 센다이 프레임워크가 2015년 제시되었다. 본 연구에서는 이런 활동 사이에 상호 연계성과 미래 DRR 활동을 위한 우리의 준비와 방향을 제공한다.

Relationship between Interannual Variability of Phytoplankton and Tropical Cyclones in the Western North Pacific

  • Park, Jong-Yeon;Kug, Jong-Seong;Park, Ji-Soo;Chang, Chan-Joo
    • Ocean and Polar Research
    • /
    • 제34권1호
    • /
    • pp.29-35
    • /
    • 2012
  • We investigated the interannual relationship between chlorophyll concentrations in the western North Pacific and tropical cyclones (TCs) in the western North Pacific by analyzing data collected for >12 years. Despite the short-term scale (2~3 weeks) in the contribution of tropical cyclones to phytoplankton, the current study revealed that the long-term chlorophyll variability in the western North Pacific is profoundly related to long-term variability in the frequency of TCs. It was also found that the Pacific decadal oscillation (PDO) tends to control such relationships between the 2 bio-physical systems. This result suggests a significant climatic relationship between TC activity and marine phytoplankton, and also suggests the possibility of more accurate estimations of primary production in the western North Pacific.

The Warm Eddy in the East Korean Bight

  • Shin, Chang-Woong;Kim, Cheol-Soo;Byun, Sang-Kyung
    • Ocean and Polar Research
    • /
    • 제23권1호
    • /
    • pp.1-10
    • /
    • 2001
  • Sea surface temperature derived from infrared images of NOAA satellites showed a warm eddy in the East Korean Bight(EKB) or Donghan Man during the winter 1997${\sim}$2000. To describe the warm eddy in the EKB, hydrographic data collected in 1934 and 1936 were also analyzed. The center of the warm eddy was located at about $39^{\circ}N$ and $129^{\circ}E$. The temperature and salinity of the eddy was about $4.0^{\circ}C$ and 34.0 psu, respectively, at 100m depth. The eddy rotated anticyclonically with a geostrophic current speed of about 20 cm/s. The mean state calculated from the data of 1922${\sim}$1960 showed the existence of a warm eddy over the EKB in winter. The eddy persists until late spring, and disappears from the previous location in summertime, only to be seen again in autumn.

  • PDF

Green Roof System의 다양한 성능 추구를 위한 공법 제시 및 성능 비교 실험 연구 (A Study of the Proposes of GRS Prototype for various purpose achievement and it's Efficiency Comparative Experiment)

  • 장대희;김현수;이건호;박창영
    • KIEAE Journal
    • /
    • 제6권2호
    • /
    • pp.59-66
    • /
    • 2006
  • Green Roof Systems are embossed that realize ecological architecture as a substantially alternative plan. So, a Purpose of the study is seeking to optimize expectation effect through the Green Roof System. we set possible object and propose the prototype on the basis of the existing Green roof System technologies. We visualize a proposed Prototype apply various materials and methods. and we analyse the effects of Green Roof System upon our City climate with use energy efficiency comparison the Green roof system with the Concrete Rooftop. We'll Provide the low data for The prospects of City climate improvement through the a ripple effect on Green Roof System and for activation of Green Roof Technology.