
Determining the correlation between outdoor heatstroke 
incidence and climate elements in Daegu metropolitan 
city 
Jung Ho Kim1, Hyun Wook Ryoo2, Sungbae Moon2, Tae Chang Jang3, Sang Chan Jin4, You Ho Mun1,   
Byung Soo Do1, Sam Beom Lee1, Jong-yeon Kim5 

1Department of Emergency Medicine, Yeungnam University College of Medicine, Daegu, Korea 
2Department of Emergency Medicine, School of Medicine, Kyungpook National University, Daegu, Korea 
3Department of Emergency Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea 
4Department of Emergency Medicine, Keimyung University School of Medicine, Daegu, Korea 
5Department of Preventive Medicine, Catholic University of Daegu School of Medicine, Daegu, Korea 

Background: Heatstroke is one of the most serious heat-related illnesses. However, establishing 
public policies to prevent heatstroke remains a challenge. This study aimed to investigate the 
most relevant climate elements and their warning criteria to prevent outdoor heatstroke (OHS). 
Methods: We investigated heatstroke patients from five major hospitals in Daegu metropolitan 
city, Korea, from June 1 to August 31, 2011 to 2016. We also collected the corresponding regional 
climate data from Korea Meteorological Administration. We analyzed the relationship between 
the climate elements and OHS occurrence by logistic regression. 
Results: Of 70 patients who had heatstroke, 45 (64.3%) experienced it while outdoors. Consider-
ing all climate elements, only mean heat index (MHI) was related with OHS occurrence (p=0.019). 
Therefore, the higher the MHI, the higher the risk for OHS (adjusted odds ratio, 1.824; 95% con-
fidence interval, 1.102–3.017). The most suitable cutoff point for MHI by Youden’s index was 
30.0°C (sensitivity, 77.4%; specificity, 73.7%). 
Conclusion: Among the climate elements, MHI was significantly associated with OHS occurrence. 
The optimal MHI cutoff point for OHS prevention was 30.0°C. 
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Introduction 

Increasing greenhouse gas emissions and consequent global 
warming continue to be major environmental issues. The average 
global temperature in July 2016 was 0.82°C higher than the mean 
temperatures from 1951 to 1980 [1]. Global warming may cause 
previously unobserved weather patterns, including extreme heat 

and cold. Prolonged exposure to high temperatures can cause 
various heat-related illnesses, such as edema, cramps, syncope, 
exhaustion, and heatstroke, which can lead to death in severe cas-
es [1-6]. For example, heatwaves, excessively hot weather lasting 
for days or weeks, claimed 14,800 lives in France in 2003 and 
55,000 lives in Russia in 2010. In 2009, Australia reported a 14-
fold increase in hospitalizations due to heat-related illnesses 
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[2,5,6]. In Korea, heatwaves caused 442 heat-related deaths from 
1991 to 2011; in Seoul, over 80 excess deaths occurred during 
the day in 1994 [7,8]. 

One of the most serious heat-related illnesses is heatstroke. It is 
typically characterized by a core body temperature exceeding 
40°C and central nervous system (CNS) abnormalities, such as 
altered mental status or seizure [2-6,9]. Older people, people 
with dehydration, individuals diagnosed with alcoholism, and in-
dividuals with previous neuropsychiatric disorders are more sus-
ceptible to heatstroke [6,9,10]. A heatwave that affected Pakistan 
during Ramadan in 2015 caused heatstroke in 78 patients within 
a period of 3 days; unfortunately, 42 of these patients died [11]. 
Several countries have implemented heat-health alert systems to 
prevent the occurrence of such heat-related health conditions. 
However, the specific methods and warning criteria for these sys-
tems vary by country [12-16]. The Korea Meteorological Ad-
ministration (KMA) is currently operating a heat alert system 
based on maximum daily temperatures [17-19]. Based on this 
alert system, the number of summer heatwaves (maximal daily 
temperature over 33°C) in Daegu, one of the hottest regions in 
Korea, have increased from 25 days in 2011 to 32 days in 2016 
and 51 days in 2013 [17]. However, this system does not consid-
er the heat index, which is a measure of the actual heat-related 
stress in the human body. 

Although there have been numerous studies regarding heat-
stroke, most of them have focused on its pathophysiology or 
complications. Only a few studies have examined the correlations 
between heatstroke and various climate elements. Previous stud-
ies aimed at identifying the most predictive climate elements and 
warning criteria for preventing heatstroke are limited. Therefore, 
we aimed to examine the correlations between outdoor heat-
stroke (OHS) incidence and climate elements in a single metro-
politan city in Korea in order to determine the most relevant cli-
mate elements and their warning criteria to prevent heatstroke. 

Materials and methods 

1. Study participants 
To compare the differences in the climate elements between the 
days when the heatstroke occurred and days that heatstroke did 
not occur, we considered all days during the summer (June 1 to 
August 31) of 2011 to 2016. To identify all heatstroke cases in the 
Daegu metropolitan city in those periods, we reviewed the medi-
cal records of 237,835 patients who were admitted to the emer-
gency room (ER) during those periods in one regional emergen-
cy medical center and four local emergency medical centers. 

The diagnosis of heatstroke was based on a patient’s medical 

history and clinical features after ruling out other febrile diseases. 
In order to determine the appropriate study participants, the fol-
lowing inclusion criteria were used. An age limit of ≥ 8 years was 
applied to ensure diagnostic accuracy, as the clinical presentation 
of heatstroke is similar to that of septicemia in children aged < 8 
years [3]. With regard to the inclusion criteria, using the final di-
agnosis is simple but it is likely that the diagnostic input may be 
missing; hence, we used the following two criteria: (1) having an 
initial body temperature of ≥ 39°C upon admission and (2) clas-
sified using diagnosis codes that indicate heat-related illnesses. A 
body temperature limit of ≥ 39°C upon admission was used to 
minimize missing cases, as the body temperature of patients could 
have been measured as < 40°C when they arrived at the ER 
[10,20,21]. A total of 4,723 patients aged ≥ 8 years who met one 
of these criteria were initially selected. Subsequently, individuals 
(1) with obviously febrile disease, (2) without history of heat ex-
posure, and (3) with no CNS abnormalities were excluded; after 
excluding these patients, 70 were ultimately classified as heat-
stroke patients [2,5,6] (Fig. 1). To analyze the relationship be-
tween heatstroke incidence and climate elements, we only includ-
ed OHS patients (excluding indoor heatstroke [IHS] patients) 

Patients who visited emergency medical center in study hospital 
from June 1 to August 31, 2011 to 2016
n=237,835

1. Body temperature ≥39.0°C when they arrived at emergency room or 
2. Diagnosis including heat related illness
n=4,723

Patients aged <8 years
n=46,833

1. Obviously febrile disease or
2. Without history of heat expose or 
3. No CNS abnormality 
n=4,653

Patients aged ≥8 years
n=191,002

Study population
n=70

Fig. 1. Flow chart of study population. CNS, central nervous system.
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and those who developed heatstroke in unknown locations. 

2. Data collection 
We retrospectively reviewed the medical records of patients ad-
mitted to each emergency medical center. With regard to the 
general characteristics, age, sex, location, circumstances when 
heatstroke occurred, and arrival type and time were considered. 
With regard to the clinical characteristics, onset time, body tem-
perature upon arrival, state of consciousness upon arrival, systolic 
blood pressure upon arrival, underlying diseases, intubation, and 
treatment outcome were considered. If the onset time was un-
known, the time when the individual was last observed as normal 
was determined. With regard to the outcome, individuals whose 
records confirmed a discharge following clinical recovery (i.e., 
normal consciousness level and body temperature) were classi-
fied as having good outcomes. Patients whose records indicated 
fatality or who were transferred to another medical center, as 
they had no signs of clinical recovery, were classified as having 
poor outcomes. 

The following climate elements for the corresponding time 
period were obtained from the KMA website: the minimum 
temperature, maximum temperature, mean temperature, mean 
relative humidity, mean wind speed, mean daylight hours, heat-
wave, and daily mean heat index (MHI) in the Daegu area. The 
daily MHIs obtained were classified as follows: very low 
( < 27°C), low (27–31°C), ordinary (32–40°C), high (41–53°C), 
very high (54–65°C), and dangerous ( ≥ 66°C) according to the 
standards currently used by the KMA. Data collection of this ret-
rospective study was commenced after approval by the Yeun-

gnam University Hospital Institutional Review Board (IRB No. 
2017-03-023). 

3. Statistical analysis 
The distributions of MHIs and OHS incidence by stage are pre-
sented (Fig. 2). To identify the individual effects of daily climate 
elements on OHS occurrence, a logistic regression analysis was 
performed with each climate element as an independent variable 
and OHS occurrence as the dependent variable. Simultaneously, 
to identify the element that was closely correlated with OHS oc-
currence, a logistic regression analysis was performed using all el-
ements as independent variables, except the days when IHS oc-
curred. To determine the appropriate cutoff point for the most 
correlated climate element to prevent OHS, the sensitivity, speci-
ficity, and Youden’s index (sensitivity+specificity–1) were calcu-
lated. 

All statistical analyses were performed using IBM SPSS version 
21.0 (IBM Co., Armonk, NY, USA), with the significance level 
set at p< 0.05. 

Results 

Of the total 70 heatstroke patients, 45 were OHS patients, 17 
were IHS patients, and 8 had heatstroke in an unknown location. 
The baseline characteristics of heatstroke patients are described 
in Table 1. 

There were no significant differences in the climate elements 
between IHS and OHS patients. Furthermore, MHI levels be-
tween the two groups were also found to be insignificant. All pa-

Fig. 2. Outdoor heatstroke occurrence by categories of heat index.
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tients developed heatstroke at an MHI level below “ordinary” 
(Table 2).  

During the study period (552 days), the day of heatstroke oc-
curred was 47 days, including the 34 days in which OHS oc-
curred. The MHI of the 34 days in which OHS occurred were 
higher than that of the other 518 days (32.1 ± 4.5°C and 
26.1 ± 4.2°C, respectively). A 1°C increase in the MHI was sig-
nificantly associated with a 1.393-fold increase in the risk for 
OHS (95% confidence interval [CI], 1.255–1.546). The mean, 

maximum, and minimum daily temperatures and diurnal tem-
perature range of OHS occurred days were also greater than 
those of the other days. A 1°C increase in the mean, maximum, 
and minimum daily temperatures and diurnal temperature range 
was significantly associated with a 1.710-fold (95% CI, 1.436–
2.036), 1.787-fold (95% CI, 1.489–2.145), 1.450-fold (95% CI, 
1.246–1.688), and 1.352-fold (95% CI, 1.175–1.557) increase in 
the risk for OHS, respectively. Similarly, a 1-hr increase in day-
light hours was significantly associated with a 1.397-fold increase 

Table 2. Climate elements and location of heatstroke

Variable Outdoor (n=45) Indoor (n=17) Unidentified (n=8) Total (n=70) p-valuea)

Climate element
 Mean heat index (°C) 32.6±4.6 33.7±2.4 34.5±1.4 33.1±4.0 0.228
 Mean air temperature (°C) 29.4±2.9 30.4±1.8 30.8±0.9 29.8±2.5 0.106
 Maximal air temperature (°C) 35.2±2.5 36.0±1.8 36.2±0.9 35.5±2.2 0.252
 Minimum air temperature (°C) 24.3±3.3 25.5±2.1 25.8±1.4 24.7±3.0 0.100
 Daily temperature range (°C) 11.0±1.9 10.5±1.5 10.3±1.9 10.8±1.8 0.394
 Mean relatively humidity (%) 62.7±8.6 60.2±6.9 61.5±6.8 61.9±8.0 0.301
 Mean wind speed (m/sec) 1.7±0.4 1.9±0.5 1.8±0.4 1.8±0.4 0.155
 Amount of sunshine (hr) 9.7±2.4 10.0±3.5 9.5±2.6 9.8±2.7 0.722
Heat index stage 0.302
 Very low 7 (15.6) 0 (0.0) 0 (0.0) 7 (10.0)
 Low 9 (20.0) 4 (23.5) 0 (0.0) 13 (18.6)
 Ordinary 29 (64.4) 13 (76.5) 8 (100.0) 50 (71.4)

Values are presented as mean±standard deviation or number (%).
a)Analysis between outdoor and indoor cases by t-test and Fisher`s exact test.

Table 1. Baseline characteristics of heatstroke patients according to the place

Variable Total (n=70) Outdoor (n=45) Indoor (n=17) Unknown (n=8)
Age (yr) 64.2±21.0 62.1±22.8 71.7±16.6 60.4±16.8
Male 50 36 (80.0) 7 (41.2) 7 (87.5)
Type of arrival
 Public EMS 44 24 (53.3) 17 (100.0) 3 (37.5)
 From other hospital 24 19 (42.2) 0 (0.0) 5 (62.5)
 Others 2 2 (4.4) 0 (0.0) 0 (0.0)
BT when arrival at hospital (°C) 39.5±1.7 39.0±1.7 41.0±0.7 39.6±1.8
SBP when arrival at hospital (mmHg) 118.0±31.0 115.6±29.9 130.6±33.9 103.8±24.4
Mental status when arrival at hospital
 Alert 21 14 (31.1) 5 (29.4) 2 (25.0)
 Drowsy 25 16 (35.6) 4 (23.5) 5 (62.5)
 Stupor 7 5 (11.1) 1 (5.9) 1 (12.5)
 Coma 17 10 (22.2) 7 (41.2) 0 (0.0)
Underlying disease
 Hypertension 25 13 (28.9) 12 (70.6) 0 (0.0)
 Diabetics mellitus 11 7 (15.6) 4 (23.5) 0 (0.0)
 Cerebrovascular disease 8 4 (8.9) 3 (17.6) 1 (12.5)

Values are presented as mean±standard deviation or number (%).
EMS, emergency medical service; BT, body temperature; SBP, systolic blood pressure.
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risk for OHS (95% CI, 1.227–1.589). 
A 1% increase in mean humidity was significantly associated 

with a 0.938-fold reduction in the risk for OHS (95% CI, 0.909– 
0.969). A 1 m/sec increase in the mean wind speed was also sig-
nificantly associated with a 0.371-fold reduction in the risk of 
OHS (95% CI, 0.199–0.694). However, when all climate ele-
ments were considered simultaneously, only the daily MHI was 
found to significantly increase OHS risk: a 1°C increase in the 
daily MHI resulted in a 1.824-fold (95% CI, 1.102–3.017) in-
crease in OHS risk (Table 3). 

The sensitivity, specificity, and Youden’s index, with exception 
of the days when heatstroke occurred indoors, were calculated to 
determine the warning criteria for OHS. The most suitable cutoff 
point was confirmed to be a daily MHI of 30.0°C (Youden’s in-
dex, 0.511; sensitivity, 77.4%; specificity, 73.7%; Table 4). 

Discussion 

Extreme weather phenomena due to global warming continue to 
occur worldwide, with a significant impact on human life [22-
26]. Heatwaves are one of the most concerning meteorological 
conditions expected to cause damage as climate change progress-
es [7,27-29]. An individual affected by heatstroke loses the abili-
ty to regulate body temperature due to damage to the hypotha-
lamic thermoregulatory system following prolonged exposure to 
high temperatures [30,31]. A sustained elevated core tempera-
ture can damage a number of internal organs, which can lead to a 
life-threatening situation [2-4,21]. Thus, many countries have 
been making efforts to reduce the disease burden associated with 
heat-related illnesses, including the implementation of effective 
heat alert systems [15,16,32-37]. An effective alert system re-
quires the selection of the most appropriate climate elements and 
their warning criteria to predict heatstroke occurrence [38]. 

In the literature, there are conflicting findings regarding which 
elements are most predictive of heatstroke occurrence. Some 
studies have reported that heat index is strongly correlated with 
the number of patients admitted to the ER due to heat-related ill-
nesses, which suggests the application of the heat index as a pre-
dictor of heat-related illness [19,39,40]. Other studies have re-
ported that the daily maximum temperature is a more appropri-
ate predictor of heatstroke occurrence than the heat index 
[8,28,41]. Heat index is the biometeorological indicator used by 
the United States National Weather Service [19]. It is calculated 
by measuring the dry-bulb Fahrenheit temperature and relative 
humidity to estimate the heat burden according to outdoor con-
ditions. 

Based on our study, various climate elements, including the 
mean, maximum, and minimum daily temperatures; diurnal 
temperature variations; daylight hours; and the MHI, were sig-
nificant risk factors for OHS occurrence, whereas mean humidity 
and mean wind speed were significant protective factors. This 
finding is congruent to the fact that, aside from prolonged expo-
sure to high heat, dry conditions and poor ventilation increase 
the risk of heatstroke. However, after simultaneously considering 
these climate elements, we found that the MHI was the only ef-
fective predictor of OHS incidence. The risk of OHS increased 
significantly by 1.82-fold for each 1°C increase in the MHI. The 
finding that the MHI was the only significant predictor of OHS 
may be attributed to the fact that the MHI is a biometeorological 
index that incorporates both dry bulb temperature and relative 
humidity for measuring climate-related heat stress in the human 
body. Thus, the heat index, which reflects both air temperature 
and humidity, may be more useful for predicting OHS incidence 
than the maximum daily temperature, which only reflects air 
temperature. 

In South Korea, the KMA has been operating heatwave alerts 

Table 3. Association between climate elements and days of outdoor heatstroke by logistic regression analysis

Outdoor heatstroke day Yes (n=34 days) Noa) (n=508 days) OR [95% CI] aORb) [95% CI]
Mean heat index (°C) 32.1±4.5 [22-39] 26.0±4.2 [18-39] 1.353 [1.217-1.504] 1.708 [1.131-2.828]
Mean air temperature (°C) 28.9±2.7 [22-32] 25.0±2.9 [17-32] 1.654 [1.375-1.988] 0.776 [0.315-1.913]
Maximal air temperature (°C) 34.8±2.4 [28-38] 29.9±3.6 [19-37] 1.713 [1.418-2.069] 0.671 [0.265-1.669]
Minimum air temperature (°C) 24.0±3.1 [16-27] 21.3±2.9 [12-28] 1.384 [1.182-1.622] 1.492 [0.572-3.892]
Daily temperature range (°C) 10.4±1.9 [7-15] 8.2±2.8 [1-16] 1.356 [1.166-1.578] 1.770 [0.732-4.282]
Mean relatively humidity (%) 60.7±8.8 [36-76] 69.1±11.6 [32-97] 0.941 [0.909-0.973] 0.950 [0.879-1.027]
Mean wind speed (m/sec) 1.2±0.5 [1-3] 1.7±0.8 [0-5] 0.392 [0.201-0.764] 0.440 [0.180-1.078]
Amount of sunshine (hr) 9.4±2.5 [2-12] 5.1±4.0 [0-13] 1.396 [1.212-1.608] 1.220 [0.958-1.553]

Values are presented as mean±standard deviation [minimum, maximum].
OR, odds ratio; CI, confidence interval; aOR, adjusted OR.
a)Excepted 10 days of indoor heatstroke only. b)Calculated considering all climates elements together.
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system based on the maximum daily temperature. Additionally, 
the KMA also provides daily heat index values, using the heat index 
categories of low (27–31°C), ordinary (32–40°C), high (41–
53°C), very high (54–65°C), and dangerous ( ≥ 66°C) based on 
the heat index classifications from the National Oceanic and At-
mospheric Administration [17]. However, these categories are not 
actively used as an alert index as there is no scientific evidence indi-
cating the most appropriate cutoff point to predict heatstroke oc-
currence [42]. 

During the study period (552 days), 332 days were categorized 
as very low risk, 129 days as low risk, and 91 days as ordinary risk, 
based on the heat index category. Significantly, none of the days 
were categorized as high, very high, or dangerous. Of the 34 days 
in which heatstroke occurred, 22 days were categorized as ordi-
nary risk, 12 days as low risk, and 5 days as very low risk (Fig. 2). 
The most appropriate cutoff value to predict OHS occurrence 
was 30.0°C. Considering these facts, the current KMA heat index 
classification system has low utility as a heatstroke alert system. 
Unfortunately, the system is potentially dangerous because it in-
variably provides the public with a false sense of heat safety. 

Thus, all countries, including Korea, should implement an effec-
tive heat-safety alert system that reflects the characteristics of 
their specific location. 

There were several limitations to our study. First, we did not 
distinguish the difference between classic and exertional heat-
stroke; therefore, weather conditions might differently influence 
the types of heatstroke. Second, we had difficulties identifying 
the precise location of a heatstroke occurrence based only on a 
medical record review. Third, although climate conditions may 
be different locally within the same region at the same time, we 
could not consider this variability using the secondary data ob-
tained from the KMA website. Therefore, it was impossible to 
accurately identify the real-life climate elements that affected the 
areas of OHS occurrence. Finally, as we did not use an individual 
level analysis such as case-crossover design, we could not adjust 
various covariates including patient’s age, sex, underlying health 
status, and so on. 

Nevertheless, to the best of our knowledge, this is the first Ko-
rean study to investigate the most relevant climate elements and 
their warning criteria to prevent heatstroke, with participation 
from all regional and local emergency medical centers. Further-
more, a large-scale medical review and regular quality control of 
the data were performed to ensure data accuracy and identify as 
many patients with suspected heatstroke as possible. Finally, we 
examined the correlations between heatstroke and climate ele-
ments using KMA’s climate data, identified the MHI as the most 
effective predictor of OHS incidence, and presented an appropri-
ate cutoff value for the alert system. 

In the short term, it will be difficult to improve the environ-
mental risk factors (including climate elements) that contribute 
to heat-related illnesses. However, the development and imple-
mentation of an effective alert system to inform the public of 
health risks and adequate response measures can provide a sub-
stantial preventive effect. Further systematic studies would be 
beneficial for the development of an effective heat alert system. 

We examined the correlations between climate elements and 
OHS in patients who were admitted to the local and regional 
emergency medical centers in Daegu. A total of 70 heatstroke pa-
tients were identified, 45 of whom experienced heatstroke out-
doors. Although various climate elements were found to be cor-
related with heatstroke incidence, the MHI was closely associat-
ed with heatstroke incidence when all elements were considered 
simultaneously. The most predictive MHI cutoff point for OHS 
prevention was 30.0°C. Further studies are required to develop 
an effective heat alert system that incorporates the biometeoro-
logical characteristics of a specific location. 

Table 4. Sensitivity and specificity of outdoor heatstroke occurrence

Cutoff point for 
MHI (°C) Sensitivity (%) Specificity (%) Youden’s index

17.0 100.0 0.0 0.000
18.0 100.0 0.0 0.000
19.0 100.0 1.0 0.010
20.0 100.0 2.4 0.024
21.0 100.0 4.8 0.048
22.0 100.0 12.1 0.121
23.0 96.8 22.2 0.190
24.0 93.5 32.9 0.264
25.0 83.9 45.3 0.292
26.0 83.9 57.8 0.417
27.0 83.9 64.8 0.486
28.0 80.6 66.1 0.468
29.0 80.6 69.5 0.502
30.0a) 77.4 73.7 0.511
31.0 61.3 79.6 0.409
32.0 61.3 88.1 0.494
33.0 58.1 92.7 0.507
34.0 41.9 97.2 0.392
35.0 35.5 98.6 0.341
36.0 19.4 99.4 0.188
37.0 12.9 99.8 0.127
38.0 3.2 99.8 0.030
39.0 3.2 99.8 0.030

MHI, mean heat index.
a)Most suitable cut-off point of a daily MHI.
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