• 제목/요약/키워드: Click sequence

검색결과 8건 처리시간 0.028초

검색결과 역배열 제시를 통한 순서 기반 정보탐색 유형 실증연구 (An Empirical Study on Click Patterns in Information Exploration)

  • 조봉관;김형중
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권2호
    • /
    • pp.301-307
    • /
    • 2018
  • 일반적으로 검색엔진은 이용자가 검색하고자 하는 내용의 정보를 제공하는 사이트를 우선 탐색할 수 있도록 검색결과의 주요내용을 요약하여 이용자에게 제공하고 있다. 본 연구에서는 이용자의 검색 결과 클릭이 검색 엔진에서 제공하는 요약 내용 기반으로 진행되는 것인지 검색결과 배치 순서에 기인한 것인지를 검색 결과 역배열 제시를 통한 실증 연구 결과를 제시하였다. 검색엔진 업체에서 제공하는 API를 활용하여 검색결과를 정배열과 역배열로 제시해 주는 검색사이트를 제작하여 각 이용자들의 검색결과에 대한 클릭 행동을 실제 클릭 순서와 클릭 위치, 클릭 수, 검색결과 내에서의 페이지 간 이동경로 등과 같은 이용자 검색 유형을 분석하였다. 분석 결과 대부분의 이용자들은 검색결과 정배열 또는 역배열 제시와 상관없이 첫 번째와 두 번째 노출된 검색 결과를 우선 클릭하는 이용자가 60% 이상 차지하였다. 이는 검색 결과 요약 내용과 상관없이 검색 결과 배치 순서에 따라 이용자의 정보탐색 우선순위가 결정되는 것으로 확인되었다.

퇴행성 악관절장애환자의 임상양태에 관한 연구 (Clinical Features of the TMD Patients with Degenerative Joint Disease)

  • Myung-Yun Ko
    • Journal of Oral Medicine and Pain
    • /
    • 제20권2호
    • /
    • pp.257-267
    • /
    • 1995
  • An Epidemiologic study was carried out on 77 TMD patients with degenerative joint disease who had visited the Orofacial Pain Clinic in Pusan National University Hospital. Al subjects were interviewed and examined clinically and radiologically using a standardized examination form. As related to gender and duration, subjective and objective sysmptoms in DJD patients were studied. The obtained results were as follows : 1. There were much more patients in the twenties or thirties, women and histories such as chronic duration and microtrauma. 2. Most patients responded positively more often to the questions of jaw function, unilateral chewing in habits, poot appetite and depression in behavioral response and shoulder pain in worsening prognosis 3. While the most common reasons for treatment were pain, noise, and limitation of opening, the associated symptoms such as headache, neckache, earache, jaw dysfunction, neck dysfunction, acute bite change and dizziness, ringing or fullness in the ears as secondary CNS excitatory effects were complained. 4. Opening the mouth in 25 to 40mm, soft end feel and deflective incisal pathway were seen and more tenderness to lateral or dorsal capsule of joint than intra or extra oral muscles were complained. 5. While there appeared no click, crepitus and single click in acute group, in chronic group, crepitus, single click and no click appeared in order of sequence. 6. Tomogram or bone scan revealed more bony changes than panorama and transcranial view.

  • PDF

웹 클릭 스트림의 효율적 분석을 위한 시간 간격 제한을 활용한 관심 순차패턴 탐색 (Mining Interesting Sequential Pattern with a Time-interval Constraint for Efficient Analyzing a Web-Click Stream)

  • 장중혁
    • 한국산업정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.19-29
    • /
    • 2011
  • 웹 관련 기술의 발달 및 스마트폰과 같은 지능형 모바일 서비스 기기의 사용 증가로 인해 오늘날 많은 분야에서 다양한 웹기반 서비스들이 널리 활용되고 있다 이러한 환정에서 개인화 및 지능화된 웹 서비스를 제공하기 위한 연구들이 활발히 진행되고 있으며, 웹 서비스 이용 기록으로부터 생성되는 웹 클릭 스트림에 대한 분석 기술은 관련 기술 중 핵심 기술의 하나이다. 본 논문에서는 순차정보 형태로 발생되는 웹 클릭 스트림에 대한 효율적 분석을 위해서 데이터 스트림 처리에 대한 기본적인 요구사항을 만족하면서 정제된 결과를 얻기 위한 순차패턴 마이닝 방법을 제시한다. 이를 위해서 먼저 순차패턴에 포함되는 단위항목들의 단순 발생 순서뿐만 아니라 발생 시간 정보를 추가로 활용하는 시간 간격 제한 관심 순차패턴을 정의하고, 이어서 웹 클릭 스트림과 같은 데이터 스트림에서 이를 효율적으로 탐색하기 위한 마이닝 방법을 제안한다. 해당 연구 결과는 웹 클릭 스트림뿐만 아니라 전자상거래, 생물정보학 및 USN 환경 등과 같이 데이터 스트림 형태로 정보를 발생시키는 여러 컴퓨터 용용 분야에서 유용하게 활용될 수 있을 것이다.

Personalized Product Recommendation Method for Analyzing User Behavior Using DeepFM

  • Xu, Jianqiang;Hu, Zhujiao;Zou, Junzhong
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.369-384
    • /
    • 2021
  • In a personalized product recommendation system, when the amount of log data is large or sparse, the accuracy of model recommendation will be greatly affected. To solve this problem, a personalized product recommendation method using deep factorization machine (DeepFM) to analyze user behavior is proposed. Firstly, the K-means clustering algorithm is used to cluster the original log data from the perspective of similarity to reduce the data dimension. Then, through the DeepFM parameter sharing strategy, the relationship between low- and high-order feature combinations is learned from log data, and the click rate prediction model is constructed. Finally, based on the predicted click-through rate, products are recommended to users in sequence and fed back. The area under the curve (AUC) and Logloss of the proposed method are 0.8834 and 0.0253, respectively, on the Criteo dataset, and 0.7836 and 0.0348 on the KDD2012 Cup dataset, respectively. Compared with other newer recommendation methods, the proposed method can achieve better recommendation effect.

쇼핑 웹사이트 탐색 유형과 방문 패턴 분석 (Analysis of shopping website visit types and shopping pattern)

  • 최경빈;남기환
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.85-107
    • /
    • 2019
  • 온라인 소비자는 쇼핑 웹사이트에서 특정 제품군이나 브랜드에 속한 제품들을 둘러보고 구매를 진행할 수 있고, 혹은 단순히 넓은 범위의 탐색 반경을 보이며 여러 페이지들을 돌아보다 구매를 진행하지 않고 이탈할 수 있다. 이러한 온라인 소비자의 행동과 구매에 관련된 연구는 꾸준히 진행되어왔으며, 실무에서도 소비자들의 행동 데이터를 바탕으로 한 서비스 및 어플리케이션이 개발되고 있다. 최근에는 빅데이터 기술의 발달로 소비자 개인 단위의 맞춤화 전략 및 추천 시스템이 활용되고 있으며 사용자의 쇼핑 경험을 최적화하기 위한 시도가 진행되고 있다. 하지만 이와 같은 시도에도 온라인 소비자가 실제로 웹사이트를 방문해 제품 구매 단계까지 전환될 확률은 매우 낮은 실정이다. 이는 온라인 소비자들이 단지 제품 구매를 위해 웹사이트를 방문하는 것이 아니라 그들의 쇼핑 동기 및 목적에 따라 웹사이트를 다르게 활용하고 탐색하기 때문이다. 따라서 단지 구매가 진행되는 방문 외에도 다양한 방문 형태를 분석하는 것은 온라인 소비자들의 행동을 이해하는데 중요하다고 할 수 있다. 이러한 관점에서 본 연구에서는 온라인 소비자의 탐색 행동의 다양성과 복잡성을 설명하기 위해 실제 E-commerce 기업의 클릭스트림 데이터를 기반으로 세션 단위의 클러스터링 분석을 진행해 탐색 행동을 유형화하였다. 이를 통해 각 유형별로 상세 단위의 탐색 행동과 구매 여부가 차이가 있음을 확인하였다. 또한 소비자 개인이 여러 방문에 걸친 일련의 탐색 유형에 대한 패턴을 분석하기 위해 순차 패턴 마이닝 기법을 활용하였으며, 같은 기간 내에 제품 구매까지 완료한 소비자와 구매를 진행하지 않은 채 방문만 진행한 소비자들의 탐색패턴에 대한 차이를 확인할 수 있었다. 본 연구의 시사점은 대규모의 클릭스트림 데이터를 활용해 온라인 소비자의 탐색 유형을 분석하고 이에 대한 패턴을 분석해 구매 과정 상의 행동을 데이터 기반으로 설명하였다는 점에 있다. 또한 온라인 소매 기업은 다양한 형태의 탐색 유형에 맞는 마케팅 전략 및 추천을 통해 구매 전환 개선을 시도할 수 있으며, 소비자의 탐색 패턴의 변화를 통해 전략의 효과를 평가할 수 있을 것이다.

효과적인 인터랙티브 비디오 저작을 위한 얼굴영역 기반의 어노테이션 방법 (Annotation Method based on Face Area for Efficient Interactive Video Authoring)

  • 윤의녕;가명현;조근식
    • 지능정보연구
    • /
    • 제21권1호
    • /
    • pp.83-98
    • /
    • 2015
  • TV를 보면서 방송에 관련된 정보를 검색하려는 많은 시청자들은 정보 검색을 위해 주로 포털 사이트를 이용하고 있으며, 무분별한 정보 속에서 원하는 정보를 찾기 위해 많은 시간을 소비하고 있다. 이와 같은 문제를 해결하기 위한 연구로써, 인터랙티브 비디오에 대한 연구가 활발하게 진행되고 있다. 인터랙티브 비디오는 일반적인 비디오에 추가 정보를 갖는 클릭 가능한 객체, 영역, 또는 핫스팟을 동시에 제공하여 사용자와 상호작용이 가능한 비디오를 말한다. 클릭 가능한 객체를 제공하는 인터랙티브 비디오를 저작하기 위해서는 첫째, 증강 객체를 생성하고, 둘째, 어노테이터가 비디오 위에 클릭 가능한 객체의 영역과 객체가 등장할 시간을 지정하고, 셋째, 객체를 클릭할 때 사용자에게 제공할 추가 정보를 지정하는 과정을 인터랙티브 비디오 저작 도구를 이용하여 수행한다. 그러나 기존의 저작 도구를 이용하여 인터랙티브 비디오를 저작할 때, 객체의 영역과 등장할 시간을 지정하는데 많은 시간을 소비하고 있다. 본 논문에서는 이와 같은 문제를 해결하기 위해 유사한 샷들의 모임인 샷 시퀀스의 모든 샷에서 얼굴 영역을 검출한 샷 시퀀스 메타데이터 모델과 객체의 어노테이션 결과를 저장할 인터랙티브 오브젝트 메타데이터 모델, 그리고 어노테이션 후 발생될 수 있는 부정확한 객체의 위치 문제를 보완할 사용자 피드백 모델을 적용한 얼굴영역을 기반으로 하는 새로운 형태의 어노테이션 방법을 제안한다. 마지막으로 제안한 어노테이션 방법의 성능을 검증하기 위해서 인터랙티브 비디오 저작 시스템을 구현하여 기존의 저작도구들과 저작 시간을 비교하였고, 사용자 평가를 진행 하였다. 비교 분석 결과 평균 저작 시간이 다른 저작 도구에 비해 2배 감소하였고, 사용자 평가 결과 약 10% 더 유용한다고 평가 되었다.

온라인 평가 문항 관리 시스템의 설계 (Design of Online Assessment Item Management System)

  • 이영석;조정원
    • 컴퓨터교육학회논문지
    • /
    • 제15권6호
    • /
    • pp.33-41
    • /
    • 2012
  • 본 논문은 온라인 평가 문항 관리 시스템 및 방법에 관한 것이다. 제안하는 시스템은 학습자 정보 데이터베이스, 영역별, 난이도별로 분류된 문항을 저장하는 문제 은행 데이터베이스로 구성된다. 문제은행 데이터베이스는 특정 학습자 또는 특정 학습에 대한 문항을 선택하는 문항 선제부, 특정 학습자 또는 특정 학습에 대한 문제지를 제작하는 문제지 제작부, 문제지를 저장하였다가 온라인 테스트를 수행할 때 출력하는 문제지 은행 데이터베이스를 포함한다. 학습자가 온라인 테스트에 제출된 문항들에 대한 문항 선택순서, 보기 선택순서, 클릭회수, 반응시간에 대한 평가 데이터를 수집하는 온라인 테스트부, 및 온라인 테스트부로부터 수집된 학습자의 온라인 테스트 평가 데이터를 분석하여 학습자의 학습수준과 학습능력, 성향을 평가하고 진단하여 보고하는 반응패턴 분석부를 포함한다. 제안하는 시스템은 보기 선택순서, 클릭회수, 반응시간을 학습자의 평가결과에 반영하여 효율적으로 학습자의 학습수준과 학습능력, 성향을 평가하고 진단할 수 있다.

  • PDF

데이타 스트림에서의 다중 조인 질의 최적화 방법 (Optimizing Multi-way Join Query Over Data Streams)

  • 박홍규;이원석
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제35권6호
    • /
    • pp.459-468
    • /
    • 2008
  • 데이타 스트림이란 실시간에 연속적으로 빠르게 생성되는 데이타 집합을 의미한다. 이러한 데이타 스트림들은 최근 사회가 발달과 더불어 정보 환경도 급속도로 발전함에 따라 센서 데이타, 교통상황 수집 자료, 웹 클릭 모니터링 등과 같은 많은 응용 분야에서 적용되고 있다. 이러한 형태의 데이트 스트립을 처리하기 위해서는 미리 등록된 질의에 대하여 새롭게 들어오는 스트림 데이타의 결과를 계속적으로 생성하게 된다. 이와 같은 이유로 끊임없이 들어오는 스트링 데이타들을 빠르게 처리하는 것이 이 분야에서 주된 이슈가 되었으며, 이를 위한 방법으로 등록된 질의들을 효율적으로 처리하기 위한 질의 최적화분야에 많은 연구가 있었다. 그러므로 본 논문에서는 기존 연구에서 사용되었던 그리디 방법을 기반으로 비용 모델을 이용하여 최소의 비용을 갖는 질의 계획을 선택하는 확장된 그리디 방법(EGA)을 제시한다. 화장된 그리디 방법은 알고리즘의 정확성이 떨어지는 그리디 알고리즘의 단점을 극복하기 위하여 비용이 가장 작은 연산하나를 선택하는 대신 비용이 자은 연산들의 집합을 선택한다. 이 연산들의 집합의 크기는 알고리즘의 정확성과 수행 시간에 영향을 끼치며, 투 개의 변수에 의해서 적응적으로 조절 수 있다. 실험에서는 다양한 스트림 환경에서 대부분 그리디 알고리즘보다 향상된 성능을 보장하고, 두 변수에 의한 알고리즘의 성능 및 수행 시간 차이를 보여줌으로써 본 알고리즘의 효율성을 검증하였다.