• Title/Summary/Keyword: Cleavage

Search Result 2,091, Processing Time 0.031 seconds

Effects of Heat Stress on the Developmental Competence of Bovine Cumulus-Oocyte Complex During in vitro Maturation (Heat Stress가 소 난자의 체외성숙과 배반포 발달에 미치는 영향)

  • Kim, Min-Su;Kim, Chan-Lan;Seong, Hwan-Hoo;Kim, Namtae;Kim, Sung Woo
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.65-71
    • /
    • 2017
  • The elevated temperature and high humidity has been known as main reason for heat stress on animals and cause detrimental effects on productivity of organisms and physiological conditions of normal bioactivities. The aims of this study were to evaluate the relationship between time of heat shock simulation during in vitro maturation and developmental competence of subsequent embryo after in vitro fertilization. Heat shocked cumulus-oocyte complexes (COCs) of Korean native cattle were subjected to normal conditions for 22, 21, 18 and 12 h respectively and transferred to heat stress inducing condition at $40.5^{\circ}C$ in other incubator for 0 (control), 1 and 4 h. After maturation for 22 h, the oocytes were fertilized and cultured in mSOF media for 8 d and examined the developmental capacity of embryos. There were no differences in maturation and cleavage rates between 0, 1 and 4 h heat socked oocytes, but blastocysts formation were lower in the 4 h heat stressed oocytes. The apoptotic cells of developed blastocysts were also increased in at day 8 with 4 h heat shocked oocytes. These results indicate that heat shock on oocytes during maturation could cause negative effects on the developmental competence of embryos.

Identification of 5-Hydroxy-3,6,7,8,3',4'-Hexamethoxyflavone from Hizikia fusiforme Involved in the Induction of the Apoptosis Mediators in Human AGS Carcinoma Cells

  • Kim, Min Jeong;Lee, Hye Hyeon;Seo, Min Jeong;Kang, Byoung Won;Park, Jeong Uck;Kim, Kyoung-Sook;Kim, Gi-Young;Joo, Woo Hong;Choi, Yung Hyun;Cho, Young-Su;Jeong, Yong Kee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1665-1672
    • /
    • 2012
  • An 80% ethanol extract of Hizikia fusiforme was obtained and followed by successive fractionation using the organic solvents n-hexane, ethyl acetate, and n-butanol to identify the antioxidative substance. The aqueous part of the nbutanol fractionation step, showing high antioxidative activity, was subjected to reverse-phase liquid chromatography. As a result, a substance purified from a BB-2 fraction showed high antioxidative activity. The m/z 419 [M+H] molecular ion peak in the fraction was observed by the analysis of the ESI-LC/MS spectrum. By the analysis of 1H NMR (500 MHz, DMSO-$d_6$) and $^{13}C$ NMR (125 MHz, DMSO-$d_6$) spectra, a unique compound of the fraction was biochemically identified as a 5-hydroxy-3,6,7,8,3',4'-hexamethoxyflavone (5HHMF). We also investigated the effect of 5HHMF on human gastric AGS carcinoma cells. Western blot analysis suggested that the flavone substantially increased the levels of the death receptor-associated apoptosis mediators Fas, Fas L, FADD, TRADD, and DR4 in a concentration-dependent manner. The levels of Fas, Fas L, TRADD, and DR4 in the cells treated with 5HHMF ($5{\mu}g/ml$) were approximately 26.4-, 12.8-, 6.7-, and 9.8-times higher than those of non-treated cells, respectively. Of note, the level of FADD protein in the cells exposed to 5HHMF ($1{\mu}g/ml$) increased approximately 9.6-times. In addition, the cleavage of caspase-3, -8, and -9 in cultured AGS cells treated with 5HHMF was significantly confirmed. Therefore, our results suggest that 5HHMF from H. fusiforme is involved in the induction of death receptor-associated apoptosis mediators in human gastric AGS carcinoma cells.

Direct Conversion of L-Selenomethionine into Methylselenol by Human Cystathionine ${\gamma}$-Lyase (인간 Cystathionine ${\gamma}$-Lyase에 의한 Selenomethionine의 Methylselenol로의 직접분해)

  • Cho, Hyun-Nam;Jhee, Kwang-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.1
    • /
    • pp.11-17
    • /
    • 2014
  • Selenium is an essential trace element for mammals, but it is very toxic. Therefore, the control of selenium concentrations should be precisely and effectively monitored. Selenium is naturally obtained through foods and seleno-L-methionine (LSeMet) is a major form of selenium. It has been reported that L-SeMet is only converted into Se-adenosyl-L-SeMet. However, a recent study suggested that L-SeMet was directly metabolized into methylselenol ($CH_3SeH$) in mouse liver extract by the reaction of cystathionine ${\gamma}$-lyase (CGL). The canonical reaction of CGL was known to catalyze the cleavage of L-cystathionine to L-cysteine, ${\alpha}$-ketobutyrate and $NH_3$. In the present study, we found that L-SeMet could be directly converted to $CH_3SeH$ using purified homogenous human CGL instead of mouse liver cytosol. Authentic $CH_3SeH$ was prepared by reduction of dimethyldiselenide with sodium tetrahydroborate. The gaseous product of the enzymatic reaction with L-SeMet was analyzed by GC/MS spectrometry. The GC/MS data was identical to that of authentic dinitrophenyl selenoether. We also analyzed the kinetic parameters for the formation of $CH_3SeH$ from L-SeMet by human and mouse CGL. These results suggest that human CGL is a critical enzyme which is responsible for L-SeMet metabolism.

Effects of PZM Media on In Vitro Development of Porcine IVM/IVF Embryos (PZM 배양액이 돼지체외수정란의 배발달에 미치는 영향)

  • 한만희;천행수;김종화;박병권;서길웅;이규승
    • Reproductive and Developmental Biology
    • /
    • v.28 no.2
    • /
    • pp.113-117
    • /
    • 2004
  • The present study was carried out to examine the effects of $O_2$ concentrations and culture media (North Carolina State University (NCSU)-23, porcine zygote medium(PZM)-3 or PZM-4) on in vitro development of porcine IVM/IVF embryos. Porcine oocyte-cumulus complexes were cultured in BSA-free NCSU-23 medium containing porcine follicular fluid (10%), cysteine (0.9 mM), $\beta$-mercaptoethanol (25 $\mu\textrm{g}$/$m\ell$), epidermal growth factor (10 ng/$m\ell$) and hormonal supplements (PMSG and hCG: 10 IU/$m\ell$) for 20∼22 h. They were then cultured in the same medium but without hormonal supplements for an additional 20∼22 h. After culture, cumulus-free oocyte were coincubated with liquid boar spermatozoa for 5∼6h. Putative zygotes were transferred to NCSU-23, PZM-3 and PZM-4 medium under the condition of 5% $O_2$ or 20% $O_2$ concentrations. At 48 h, no mean differences were found in cleavage rates. However, the rates of blastocyst formation at day 7 after in vitro fertilization were significantly higher in PZM-3 medium under the condition of 5% $O_2$ concentration than other treatments (19.9$\pm$2.4 vs. 11.1$\pm$2.0 to 16.0$\pm$2.5%, P<0.05). The total cell numbers of blastocysts were significantly higher in 5% $O_2$ than in 20% O2 (P<0.05). However, no differences was found among the culture media within each $O_2$ concentrations. In conclusion, the use of PZM-3 medium in 5% $O_2$ concentration was effective on in vitro development of porcine IVM/IVF embryos.

A study on the derivatization technique for tamoxifen metabolites in human urine by gas chromatography/mass spectrometry (기체크로마토그래피/질량분석기를 이용한 인체 내 뇨시료에서의 Tamoxifen 대사체 검출을 위한 유도체화 연구)

  • Kim, Yunje;Lee, Yoonjung
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.322-336
    • /
    • 2004
  • The improved derivatization technique of tamoxifen metabolite in human urine is described for the acylation method that they are substituted by derivatization reagent like acyl anhydride for use of gas chromatography/mass spectrometry. The hydroxyl group of tamoxifen metabolite was derivatized by trifluoroacetic anhydride (TFAA), pentafluoroacetic anhydride (PFPA) and heptaflorobutylic anhydride (HFBA). It was investigated to the gas chromatography/mass spectrometry (GC/MS) technique use negative ion chemical ionization (NCI), positive ion chemical ionization (PCI) and electron impact (EI). In acylation of the metabolites of tamoxifen, the effective reaction temperature and time were shown to be at $50^{\circ}C$ for 30 min. The 4-hydroxytamoxifen, which is known to major metabolite of tamoxifen, was not detected in human urine, whileas the hydroxymethoxytamoxifen was detected. We thought that this result was from the single dose of tamoxifen.

Involvement of Bcl-2 Family and Caspases Cascade in Sodium Fluoride-Induced Apoptosis of Human Gingival Fibroblasts

  • Jung, Ji-Yeon;Park, Jae-Hong;Jeong, Yeon-Jin;Yang, Kyu-Ho;Choi, Nam-Ki;Kim, Sun-Hun;Kim, Won-Jae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.10 no.5
    • /
    • pp.289-295
    • /
    • 2006
  • Sodium fluoride (NaF) has been shown to be cytotoxic and elicit inflammatory response in human. However, the cellular mechanisms underlying NaF-induced cytotoxicity in periodontal tissues have not yet been elucidated. This study is aimed to investigate the mechanisms of NaF-induced apoptosis in human gingival fibroblast (HGF). NaF decreased the cell viability of HGF in a dose- and time-dependent manner. NaF gave rise to apoptotic morphological changes including cell shrinkage, chromatin condensation, and DNA fragmentation. However, NaF did not affect the production of ROS. In addition, NaF augumented cytochrome c release from mitochondria into the cytosol, and enhanced caspase -9 and -3 activities., cleavage (85 kDa fragments) of poly (ADP-ribose) polymerase (PARP) and upregulation of voltage-dependent anion channel (VDAC) 1. These results demonstrated that NaF-induced apoptosis in HGF may be mediated with mitochondria. Furthermore, NaF elevated caspase-8 activity and upregulated Fas-ligand (Fas-L), suggesting involvement of death receptor mediated pathway in NaF-induced apoptosis. Expression of Bcl-2, an anti-apoptotic Bcl-2 family, was downregulated, whereas expression of Bax, a pro-apoptotic Bcl-2 family, was not affected in NaF-treated HGF. These results suggest that NaF induces apoptosis in HGF through both mitochondria- and death receptor-mediated pathway mediated by Bcl-2 family.

Raman spectroscopy study of graphene on Ni(111) and Ni(100)

  • Jung, Dae-Sung;Jeon, Cheol-Ho;Song, Woo-Seok;Jung, Woo-Sung;Choi, Won-Chel;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.59-59
    • /
    • 2010
  • Graphene is a 2-D sheet of $sp^2$-bonded carbon arranged in a honeycomb lattice. This material has attracted major interest, and there are many ongoing efforts in developing graphene devices because of its high charge mobility and crystal quality. Therefore clear understanding of the substrate effect and mechanism of synthesis of graphene is important for potential applications and device fabrication of graphene. In a published paper in J. Phys. Chem. C (2008), the effect of substrate on the atomic/electronic structures of graphene is negligible for graphene made by mechanical cleavage. However, nobody shows the interaction between Ni substrate and graphene. Therefore, we have studied this interaction. In order to studying these effect between graphene and Ni substrate, We have observed graphene synthesized on Ni substrate and graphene transferred on $SiO_2$/Si substrate through Raman spectroscopy. Because Raman spectroscopy has historically been used to probe structural and electronic characteristics of graphite materials, providing useful information on the defects (D-band), in-plane vibration of sp2 carbon atoms (G-band), as well as the stacking orders (2D-band), we selected this as analysis tool. In our study, we could not observe the doping effect between graphene and Ni substrate or between graphene and $SiO_2$/Si substrate because the shift of G band in Raman spectrum was not occurred by charge transfer. We could noticed that the bonding force between graphene and Ni substrate is more strong than Van de Waals force which is the interaction between graphene and $SiO_2$/Si. Furthermore, the synthesized graphene on Ni substrate was in compressive strain. This phenomenon was observed by 2D band blue-shift in Raman spectrum. And, we consider that the graphene is incommensurate growth with Ni polycrystalline substrate.

  • PDF

Induction of Apoptotic Cell Death by Cordycepin, an Active Component of the Fungus Cordyceps militaris, in AGS Human Gastric Cancer Cells (동충하초 유래 cordycepin에 의한 AGS 인체 위암세포의 apoptosis 유발)

  • Lee, Hye Hyeon;Jeong, Jin-Woo;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.847-854
    • /
    • 2016
  • Cordycepin, a derivative of the nucleoside adenosine, is one of the active components extracted from fungi of genus Cordyceps, and has been shown to have many pharmacological activities. In this study, we investigated the effects of cordycepin on proliferation and apoptosis of human gastric cancer AGS cells, and its possible mechanism of action. Treatment of cordycepin resulted in significant decrease in cell viability of AGS cells in a concentration-dependent manner. A concentration-dependent apoptotic cell death was also measured by agarose gel electrophoresis and flow cytometery analysis. Molecular mechanistic studies of apoptosis unraveled cordycepin treatment resulted in an enhanced expression of tumor necrosis factor-related apoptosis-inducing ligand, death receptor 5 and Fas ligand. Furthermore, up-regulation of pro-apoptotic Bax, and down-regulation of anti-apoptotic Bcl-2 and Bcl-xL expression were also observed in cordycepin-treated AGS cells. These were followed by activation of caspases (caspase-9, -8 and -3), subsequently leading to poly (ADP-ribose) polymerase cleavage. Taken together, these findings indicate that cordycepin induces apoptosis in AGS cells through regulation of multiple apoptotic pathways, including death receptor and mitochondria. Although further mechanical studies are needed, our results revealed that cordycepin can be regarded as a new effective and chemopreventive compound for human gastric cancer treatment.

Comparison of Free Sugar Content and Related Enzyme Activities on Different Parts of 'Changhowon Hwangdo' Peach Fruit (복숭아 '장호원황도' 과실의 부위별 유리당 함량 및 관련 효소활성 비교)

  • Kim, Sung-Jong;Park, Hye-Young
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.387-393
    • /
    • 2010
  • The free sugar content and related enzymes of four different parts, inner, outer, stylar end and stem end, of 'Changhowon Hwangdo' peach ($Prunus$ $persica$, L. Batsch) fruit were compared from August to September in 2006, i.e., from 120 to 150 days after full bloom (DAFB). The soluble solids content (SSC) of stylar end was the highest among the four fruit parts at 150 DAFB. Changes of free sugar content were similar to that of SSC in the four parts. The starch content at the stylar end was the highest at 120 DAFB, while all the other parts showed low starch contents at 150 DAFB. The free sugar composition of peach changed during fruit development. The sucrose was low at 120 DAFB and increased gradually in all parts of peach fruit. On the contrary glucose, fructose and sorbitol decreased with fruit development. The free sugar contents and related enzymes activities were investigated during fruit development. The rapid increase of sucrose contents during fruit development was more affected by sucrose synthase than sucrose phosphate synthase. Activity of SS in the four fruit parts increased continuously over the fruit development period, but activity of acid invertase showed a downward trend. This study found that the free sugar content was affected by enzyme activity for the synthesis or the cleavage. However, it was very difficult to explain sugar accumulation of peach segments with related-enzymes.

Identification of Alga-lytic Bacterium AK-07 and Its Enzyme Activities Associated with Degradability of Cyanobacterium Anabaena cylindrica (Anabaena cylindrica 분해세균 AK-07의 동정과 분해 관련 효소활성 조사)

  • Kim, Jeong-Dong;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.2 s.103
    • /
    • pp.108-116
    • /
    • 2003
  • To investigate bacteria with algal Iytic activities against Anabaena cylindrica when water blooming occurs and to study enzyme profiles of alga-Iytic bacteria, various bacterial strains were isolated from surface waters and sediments in eutrophic lakes or reservoirs in Korea. Abacterial strain AK-07 was characterized and identified as Acinetobacter johnsonii based on its16S rDNA base sequence. When AK-07 was co-cultivated with A. cylindrica, bacterial cells propagated to $8\;{\times}\;10^8$ cfu $ml^{-1}$ and Iyses algal cells. However, culture filtrates of AK-07 did not exhibit algal Iytic activities. That suggesting the enzymes on the surfaces of the bacterium might be effective algal Iytic agents to cause Iyses of cells. Acinetobacter johnsonii AK-07 exhibited high degradation activities against A. cylindrica, and formed alginase, caseinase, lipase, fucodian hydrolase, and laminarinase. Moreover, glycosidases for example ${\beta}$-galatosidase, ${\beta}$-glucosidase, ${\beta}$-glucosaminidase, and ${\beta}$-xylosidase, which hydrolyzed ${\beta}$-0-glycosidic bonds, were found in cell-free extracts of A. johnsonii AK-07. Other glycosidase such as ${\alpha}$-galctosidases, ${\alpha}$-N-Ac-galctosidases, ${\alpha}$-mannosidases, and ${\alpha}$- L-fuco-sidases, which cleavage ${\alpha}$-0-glycosidic bondsare not detected. In the results, enzyme systemsof A. johnsonii AK-07 were very complex to do-grade cell walls of cyanobacteria. The polysaccharides or peptidoglycans of A. cylindrica maybe hydrolyzed and metabolized to a range of easily utilizable monosaccharides or other low molecular weight organic substances by strain AK-07 of A. johnsonii.