• Title/Summary/Keyword: Clearance flow

Search Result 480, Processing Time 0.031 seconds

Flow Characteristics of Mass Flow Amplifier with Various Geometrical Configurations (질량유량 증폭기 형상변화에 따른 유동 특성 연구)

  • Lee, Jeong-Min;Kang, Hyun-Su;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.2
    • /
    • pp.36-42
    • /
    • 2016
  • Mass flow amplifier, which is an aerodynamic device, makes air flow increased by ejecting small amount of compressed air with $Coand{\breve{a}}$ effect. In this study, the flow characteristics of a mass flow amplifier were studied with various flow conditions and geometrical configurations. In order to improve the performance of mass flow amplifier, various values of clearance, diffuser angle and the aspect ratio of induced flow inlet to outlet were considered as design parameter. Furthermore, four different pressure conditions of compressed air were also considered. Numerical study was performed using the commercial CFD code, ANSYS CFX 14.5 with shear stress transport(SST) turbulent model. The results of pressure and velocity distributions were graphically depicted with different geometrical configurations and operating conditions.

Numerical Analysis of Heat Transfer and Flow Characteristics on Squealer Tip of Gas Turbine Blade (가스터빈 블레이드 팁의 열전달과 유동 특성에 대한 수치적 해석)

  • Jiao, Liu;Kang, Youngseok;Kim, Donghwa;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1062-1070
    • /
    • 2016
  • The heat transfer and flow characteristics of gas turbine blade tip were investigated in this paper by using the conjugate heat transfer analysis. The rotor inlet boundary condition profile which was taken from the first stage nozzle outlet was used to analyse. The profile contained the velocity and temperature information. This study presents the influence of tip clearance about aerodynamic loss, heat transfer coefficient and film cooling effectiveness with the squealer tip designed blade model which tip clearance variation range from 1% to 2.5% of span. Results showed that the aerodynamic loss and the heat transfer coefficient were increased when the tip clearance was increased. Especially when the tip clearance was 2% of the span, the average heat transfer coefficient on the tip region was increased obviously. The film cooling effectiveness of tip region was increasing with decreasing of the tip clearance. There was high film cooling effectiveness at cavity and near tip hole region.

A Study on the Thrust Force of a Narrowly Spaced Disk Valve (좁은 틈새 원판 밸브의 추력에 관한 연구)

  • Jeong, Hyo-Min;Kim, Si-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.23 no.1
    • /
    • pp.30-38
    • /
    • 1987
  • One of the important characteristics of a disk valve is the thrust force. This thrust force has close relationship to the clearance between valve and valve seat in the disk valve. When the clearance is very small, it is very important to analyze the thrust force. This paper deals with the variation of the thrust force by comparing the experimental ed results and theoretical results in accordance with d the valve clearance. In case of the theoretical problems, the pressure gradient of the radial flow in a narrowly spaced disks was calculated by Sui Lin and Pai-Mow Lee already. Therefore, the thrust force of the disk valve was computed by utilizing this pressure gradient in the radial flow. In the experiment, the hydraulic oil which has high viscosity was used. Making the comparative study of the calculated results and the experimental results, the characteristics of the thrust force in the disk valve were investigated. The results obtained are as follows: 1. When the disk valve clearance was comparatively small, the experimental values had fairly good agreement with the calculated values independently of inlet pressure and valve size. 2. When the disk valve size was constant in the wide range of the disk valve clearance, the lower the inlet pressure was, the better the agreement between the experimental values and the calculated values was. 3. In case of the small clearance, the thrust force was depended on the outer diameter of the disk valve. In opposite case the thrust force was constant as the disk valve size varied.

  • PDF

Experimental Study on the Flow Characteristics in a Low Speed Research Compressor (연구용 저속 축류압축기의 내부 유동 특성에 관한 실험적 연구)

  • Park, Tae-Choon;Han, Jung-Youp;Kang, Shin-Hyoung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.11 no.6
    • /
    • pp.54-63
    • /
    • 2008
  • A study on the flow characteristics in a 4-stage axial compressor and the behavior of rotating stall was experimentally performed at the third-stage rotor and stator rows in order to investigate its performance and instability of the compression system. The pressure losses generated due to the leakage flow at a tip clearance and a shroud seal clearance and the wake flow near the trailing edge of a blade were taken into consideration to estimate the causes of performance drop of the low speed research compressor(LSRC) in Seoul national university. In addition, the measurement of rotating stall was conducted with hot-wire probes and the existence and propagation of stall cell could be confirmed through fast Fourier transform and cross-correlation analysis.

Design and Flow Phenomenon of Pump and Blower (펌프${\cdot}$송풍기의 설계와 유동현상)

  • Cho, King Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.17-30
    • /
    • 2002
  • The design method of turbomachinery has been developed highly. But some geometric dimensions have been determined from the empirical view points. In designing the inlet outer diameter of pump impeller and the hub ratio of blower, satisfactory theoretical grounds have not been presented till now. In the paper, these points are discussed and the method of increasing pump and blower efficiencies are also discussed on the basis of experimental and computational results of flow analysis. Further, the effects of tip clearance of rotor on its efficiency and the interference of rotor and stator blade rows are discussed and some ideas to estimate their effects are presented.

  • PDF

Effect of Cimetidine on the Hepatic Blood flow -On the Basis of Pharmacokinetics of Indocvanine Green in Rats- (시메티딘이 간혈류량에 미치는 영향 - Rat에 있어서 Indocyanine Green의 체내 동태를 중심으로 -)

  • Lee, Yong-Bok;Koh, Ik-Bae
    • Korean Journal of Clinical Pharmacy
    • /
    • v.3 no.2
    • /
    • pp.163-168
    • /
    • 1993
  • The influence of cimetidine pretreatment(100mg/kg, single i.p.) on the hepatic blood flow was investigated using pharmacokinetic parameters of indocyanine green(ICG) in the rat on the basis of hepacc perfusion-limited model. ICG(1mg/kg) was respectively administered via femoral and portal vein to the control and to the cimetidine-pretreated rats. The rate constant K12, K20 and the systemic clearance(CLt) of ICG were significantly(p<0.05) decreased ill the cimetidine-pretrea-to(B rats, but no significant diffirences were observed in hematocrit and liver weight. The biliary excretion rates of ICG were also decreased regardless of the route of administration in the cimetidine-pretreated rats. And also the hepatic blood flow in rats was decreased about $16\%$ by cimetidine. It may be concluded that the decreased hepatic blood flow with cimetidine mainly contributed to the decreased hepatic uptake and the decreased systemic clearance of ICG.

  • PDF

Tip Leakage Flow on the Transonic Compressor Rotor (천음속 회전익에서의 누설유동)

  • Park, Jun-Young;Chung, Hee-Taeg;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.84-94
    • /
    • 2003
  • It is known that tip clearance flows reduce the pressure rise, flow range and efficiency of the turbomachinery. So, the clear understanding about flow fields in the tip region is needed to efficiently design the turbomachinery. The Navier-Stokes code with the proper treatment of the boundary conditions has been developed to analyze the three-dimensional steady viscous flow fields in the transonic rotating blades and a numerical study has been conducted to investigate the detail flow physics in the tip region of transonic rotor, NASA Rotor 67. The computational results in the tip region of transonic rotors show the leakage vortices, leakage flow from pressure side to suction side and their interaction with a shock. Depen ding on the operating conditions, toad distributions and the position of shock-wave on the blade surface are very different close to the blade tip of the transonic compressor rotor. The load distribution and the shock-wave position close to the blade tip had the close relationship with the starting position of leakage vortex and the direction of leakage flow.

Air Jet Effect on Performance Improvement of Non-Contact Type Seals for Oil Mist Lubrication Systems (공기분사가 오일미스트 윤활 시스템용 비접촉 시일의 성능 향상에 미치는 영향)

  • Na, Byeong-Cheol;Jeon, Gyeong-Jin;Han, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2159-2166
    • /
    • 2000
  • Recently, high performance machining center requires special type of sealing mechanism that prevent a leakage of oil jet or oil mist lubrication system. Sealing of oil-air mixture plays important r oles to have an enhanced lubrication for performance machining center. Current work emphasizes on investigations of the air jet effect on the protective collar type labyrinth seal. To improve sealing capabilities of conventional labyrinth seals, air jet is injected against the leakage flow. In this study, an adapted model is introduced to improve sealing capability of conventional non-contact type seals. It has a combined geometry of a protective collar type and an air jet type. Both of a numerical analysis by CFD (Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement. The sealing effects of the leakage clearance and the air jet magnitude aic studied in various parameters. Gas or liquid has been used as a working fluid for most of nori-contact types seals including the labyrinth seal. However, it is more reasonable to regard two-phase flows because oil mist or oil jet are used for high performance spindle's lubrication. In this study, working fluid is regarded as two phases that are mixed flow of oil and air phase. Both of turbulence and compressible flow model are also introduced in a CFD analysis to represent an isentropic process. Estimation of non-leaking property is determined by amount of pressure drop in the leakage path. Results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient. Effect of the sealing improvement is explained as decreasing of leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger

Numerical Simulation and Experimental Research of the Flow Coefficient of the Nozzle-Flapper Valve Considering Cavitation

  • Li, Lei;Li, Changchun;Zhang, Hengxuan
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.176-188
    • /
    • 2017
  • The nozzle-flapper valves are widely applied as a pilot stage in aerospace and military system. A subject of the analysis presented in this work is to find out a reasonable range of null clearance between the nozzle and flapper. This paper has presented a numerical flow coefficient simulation. In every design point, a parameterized model is created for flow coefficient simulation and cavitation under different conditions with varying gap width and inlet pressure. Moreover, a new test device has been designed to measure the flow coefficient and for visualized cavitation. The numerical simulation and test results both indicate that cavitation intensity gets fierce initially and shrinks finally as the gap width varies from small to large. From the curve, the flow coefficient mostly has experienced three stages: linear throttle section, transition section and saturation section. The appropriate deflection of flapper is recommended to make the gap width drop into the linear throttle section. The flapper-nozzle null clearance is optionally recommended near the range of $D_N/16$. Finally through simulation it is also concluded that the inlet pressure plays a little role in the influence on the flow coefficient.

A study on the performance and internal flow of inline Francis turbine

  • Chen, Chengcheng;Inagaki, Morihito;Choi, Young-Do
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1225-1231
    • /
    • 2014
  • This paper presents the performance characteristic of a Francis hydro turbine with an inline casing. This turbine is designed for city water supply system. Due to large changes in ground elevation with high points and low points, some systems may experience larger-than-normal required pressures in areas with low ground elevations. One way to dissipate these excess pressures is by the use of an inline-turbine instead of an inline-pressure reducing valve. For best applicability and minimal space consumption, the turbine is designed with an inline casing instead of the common spiral casing. As a characteristic of inline casing, the flow accesses to the runner in the radial direction, showing a low efficiency. The installation of vanes improves the internal flow and gives the positive encouragement to the output power. For the power transmission to the outside of the turbine casing from the runner axis, a belt passage is designed in the inline casing, as its influence, the region after the belt passage shows a relatively low output power. The clearance gap in the runner side space is considered, in which a small volume of flow is contracted into the clearance gap, forming the leakage flow. The leakage flow leads to a decrease in the efficiency.