• Title/Summary/Keyword: Clearance Design

Search Result 490, Processing Time 0.023 seconds

A Study on the Performance of the Ring-type Impulse Turbine for Wave Energy Conversion (파력발전용 링타입 임펄스터어빈의 성능 해석)

  • HYUN BEOM-SOO;MOON JAE-SEUNG;HONG SEOK-WON;KIM KI-SUP
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.20-25
    • /
    • 2006
  • This paper deals with the design and aerodynamic analysis of a so-called 'ring-type' impulse turbine for wave energy conversion. Numerical analysis was performed using the CFD cock, FLUENT. The main idea of the proposed turbine rotor was to minimize the adverse effect of tip clearance of the turbine blade; the design was borrowed from a ducted propeller with connected ring tip for special purpose marine vehicles. Results show that the efficiency increases up to $10\%$, depending on flaw coefficient, with the higher flaw coefficient yielding better efficiency. Decrease of input coefficient CA was the main reason for higher efficiency. Performance of ring-type rotor at various design parameters, as well as flaw conditions, was investigated, and the advantages and the disadvantages of the present impulse turbine were also discussed.

A Study on the Development of Practical and Adaptive Progressive Die for Very Thick Sheet Metals (후판재료에 대한 실 적응성 프로그레시브 금형 개발에 관한 연구)

  • Sim, Sung-Bo;Lee, Sung-Taeg;Song, Young-Seok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.1 no.1
    • /
    • pp.63-70
    • /
    • 2002
  • In the field of design and making tool for press working, the progressive die for very thick sheet metal(SS41, 4mm) is a specific division. In order to prevent the defects, the optimum design of the production part, Strip layout, die design, die making and tryout etc. are necessary. They require analysis of many kinds of important factors, i.e. theory and practice of metal working process and its phenomena, die structure, machining condition for die making, die materials, heat treatment of die component, know-how and so on. In this study, we designed and constructed a progressive die of multi stage and tried out through the I-DEAS, DEFORM, and CAD/CAM application. Out of these processes, the die development could be taken advanced technology. Especially the result of try out and its analysis become to the characteristic of this study.

  • PDF

Design of Half Blanking Process for Reducing Rollover and Stress Acting on Tools in Forming of Lower Tooth (로어투스의 롤오버 및 금형 면압 저감을 위한 하프블랭킹 공정 설계)

  • Jang, M.J.;Choi, H.S.;Lee, S.H.;Kim, D.S.;Lee, S.G.;Ko, D.C.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.20 no.3
    • /
    • pp.214-221
    • /
    • 2011
  • In recent years, automotive seat components have been manufactured by the fine blanking process, allowing an improvement of dimensional accuracy at sheared surface in series production. However, the rollover has increased and die failures have occurred more frequently when manufacturing gears by fine blanking. Consequently, important goals for manufacturing seat recliner parts with gears have been to decrease the rollover as well as to improve the tool life. In this study, the half blanking and shaving processes were introduced to improve aforementioned problems for the lower tooth, the main component of a seat recliner. For this purpose, the half blanking process was optimized using the finite element (FE) analysis and design of experiment (DOE). The optimized conditions resulting from this study were an offset of 0.2 mm, a clearance of 0.1 mm and a penetration depth of 4.5 mm. Fine blanking experiment conducted under the optimal condition resulted in a rollover depth decrease from 1.9 to 1.3 mm, and no die failure occurrence.

A Case Study of Title Design using Motion Graphic;Focused on KBS and tvN News Program Title (모션그래픽을 이용한 타이틀디자인의 활용 사례 연구;KBS, tvN 뉴스프로그램 타이틀 중심으로)

  • Kim, Sung-Jae
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.7
    • /
    • pp.146-152
    • /
    • 2008
  • In the modern times, video media area is dramatically developing and growing. The motion graphic that is one of video presentation technique as an effective communication way between sender and receiver is beginning to make its appearance. The motion graphic provides the clearance of visual information to deliver it more easily and accurately and improves the effect of communication to increase the effect of image and information delivery. In this research, the writer wants to examine the production method of motion graphic to improve convenience and efficiency of communication to the better direction for production process by researching and analyzing the title design and its structure having short and significant information delivery and strong visual presentation function.

Durability Improvement of Engine Bulkhead by Adjusting Design Parameters (설계인자변화에 따른 엔진 벌크헤드 내구성 향상)

  • Yang, Chull-Ho;Han, Moon-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.111-116
    • /
    • 2011
  • Three-dimensional finite element analyses have been performed to improve the durability of bulkhead. To keep pace with design changes and concentrate on regions of interest, SUBMODEL technique in ABAQUS was used for analysis. An analysis was conducted with following load cases: 1) Cap press-fit, 2) Bearing crush, 3) Bolt assembly, 4) Hot assembly, 5) Firing load, 6) Alternating firing load, 7) 2nd hot assembly. Fatigue analysis was done using commercial software FEMFAT and fatigue factors at the interested regions such as bolt tip area, counter bore, breathing hole, honing clearance were calculated and compared to aid design validation. Finite element modeling in the area of thread engagement used a simple constraint equations. Increasing bolt length, to a minimum of 39 mm above joint face gives a better fatigue resistance to the bulkhead. Breathing hole helps not only circulate the air in the crankcase but also fatigue resistance of bulkhead by relieving the stress at the critical locations.

Design Analysis to Enhance Rotordynamic Stability of High-Speed Lightweight Centrifugal Compressor - Part I: Effects of Bearing Designs (프로세스 고속 경량 원심 압축기의 로터다이나믹 안정성 강화를 위한 설계해석 - Part I: 베어링 설계의 영향)

  • Lee, An Sung
    • Tribology and Lubricants
    • /
    • v.29 no.6
    • /
    • pp.386-391
    • /
    • 2013
  • Part I of this study analyzed the effects of tilting pad bearing designs to reduce the stiffness of the bearings used in a process high-speed lightweight centrifugal compressor intended for a domestic refinery use. This was done in an attempt to enhance the robustness of its rotordynamic stability against possible aerodynamic cross-coupled stiffness. The bearing design variables reviewed were the clearances, LBPs, LOPs, and preloads. The results showed that there was practically no difference between the LBP and LOP designs in terms of the bearing stiffness, because the compressor rotor was lightweight and the bearings had relatively high preloads. Increasing both the machined and assembled clearances in bearing designs has resulted in the bearing stiffness being greatly reduced. In addition, it has been confirmed that an additional reduction in the bearing stiffness can be obtained for given fixed machined clearances by decreasing the preloads, i.e., by increasing the assembled clearances.

The Kitchen furniture design Based on Stored items of Cooking Area in 40-pyung type apartment Houses (40평형 아파트 식생활용품 수납실태에 따른 부엌가구디자인)

  • Kim, Gi-In;Kim, Sun-Joong;Kwon, Myung-Hee
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2009.04a
    • /
    • pp.304-309
    • /
    • 2009
  • The purpose of this study is to develop kitchen furniture design for 40-pyung apartment Houses based on stored item of Cooking, Eating and Utility Area. The research data is gotten at a field study of stored items of Cooking, Eating and Utility Area and depth interview. The results of this study were as follows; 1)The kitchen furniture the preparation unit and the sink, the kitchen table, the heating unit and the service table, arranged at the tall storage. 2)The total bulk considered and holding volume ($2.7m^3$) with ground clearance (40%) planned with about $4.21m^3$. 3)Assumed at height and 162cm did a lower part height with 860mm and the upper depth 340mm, did with 700mm where raises. the storage the ceiling which raises will select and considered and with 2200mm did. 4)Arrangement of the kitchen the kitchen form which is an open type (L/DK or L.D.K) arranged many in forms of letter.

  • PDF

Effect of Punch Design and Flow Stress on Frictional Calibration Curve in Boss and Rib Test (보스-리브 시험 시 마찰보정선도에 대한 펀치형상 및 유동응력의 영향)

  • Yun, Y.W.;Kang, S.H.;Lee, Y.S.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.18 no.8
    • /
    • pp.640-645
    • /
    • 2009
  • Recently, boss and rib test based on backward extrusion process was proposed to quantitatively evaluate the interfacial friction condition in bulk forming process. In this test, the tube-shaped punch with hole pressurizes the workpiece so that the boss and rib are formed along the hole and outer surface of the punch. It was experimentally and numerically revealed that the height of boss is higher than that of the rib under the severe friction condition. This work is focused on the effect of the punch design and flow stress on deformation pattern in boss and rib test. From the boss and rib test simulations, it was found that there is slight variation in both the heights of boss and rib according to the length of punch land, nose radius, and face angle. However the hole diameter of the punch and the clearance between the punch and die have a significant influence on the calibration curves showing the heights of the boss and rib. In addition, the effect of flow stress on the calibration curves was investigated through FE simulations. It was found that there is no effect of strength coefficient of the workpiece on the calibration curves for estimation of friction condition. On the other hand, the strain-hardening exponent of the workpiece has a significant influence on the calibration curve.

Performance Prediction of Centrifugal Compressors (원심 압축기의 성능 예측)

  • 오형우;정명균
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.2
    • /
    • pp.136-148
    • /
    • 1997
  • The present study has been carried out to develop a computational procedure for the analysis of the off-design performance in centrifugal compressors with vaneless diffusers by integrating empirical loss models and analytical equations. Losses in centrifugal compressors stem from a number of sources and their exact calculation is not yet possible. This study investigates several modeling schemes and shows that a fairly good prediction can be achieved by a proper selection of the most important flow parameters resulting form a meanline one-dimensional analysis. The performance maps for compressors are calculated and compared with measured performance maps. The off-design performance characteristics in terms of the pressure ratio vs. mass flow produced have generally correct forms. However, no universal means have been found to predict accurately the onset of surge. The prediction method developed through this study can serve as a tool to ensure good matching between parts and it can assist the understanding of the operational characteristics of general purpose centrifugal compressors.

  • PDF

Rotordynamic Analysis of Automotive Turbochargers Supported on Ball Bearings and Squeeze Film Dampers in Series: Effect of Squeeze Film Damper Design Parameters and Rotor Imbalances (볼 베어링과 스퀴즈 필름 댐퍼로 지지되는 차량용 터보차저의 회전체동역학 해석: 스퀴즈 필름 댐퍼 설계 인자와 회전체 불균형 질량의 영향)

  • Kim, Kyuman;Ryu, Keun
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Modern high-performance automotive turbochargers (TCs) implement ceramic hybrid angular contact ball bearings in series with squeeze film dampers (SFDs) to enhance transient responses, thereby reducing the overall emission levels. The current study predicts the rotordynamic responses of the commercial automotive TCs (compressor wheel diameter = ~53 mm, turbine wheel diameter = ~43 mm, and shaft diameter at the bearing locations = ~7 mm) supported on ball bearings and SFDs for various design parameters of SFDs, including radial clearance, axial length, lubricant viscosity, and rotor imbalance conditions (i.e., amplitudes and phase angles) while increasing rotor speed up to 150 krpm. This study validates the predictive rotor finite element model against measurements of mass, polar and transverse moments of inertia, and free-free mode natural frequencies and mode shapes. A nonlinear rotordynamic model integrates nonlinear force coefficients of SFDs to calculate the transient responses of the TC rotor-bearing system. The predicted results show that SFD radial clearances, as well as phase angles of rotor imbalances, have the paramount effect on the dynamic responses of TC shaft motions.