• Title/Summary/Keyword: Clearance Design

Search Result 489, Processing Time 0.024 seconds

Determination of Optimal Process Condition for the Precision Blanking of Lend Frame (리드프레임 타발 공정의 최적 전단 조건의 선정)

  • Suh E. K.;Lim S. H.;Shim H. B.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.71-74
    • /
    • 2001
  • Using the Taguchi method, optimum process condition of lead frame blanking has been determined in the point of view of shape of blanked profile. As the main process parameters, clearance, strip holding pressure and bridge width are selected. According to the orthogonal array table, three levels of experiment have been carried out for each factors. The optimal blanking condition is analyzed with the SN ratio. It has been verified that the optimal process condition can be determined with a combination of basic blanking experiment and experiment design method. Both the effect of each factors and gain can be judged in the quantitative manners from the analysis of SN ratio.

  • PDF

A Study on the Characteristics of the Precision Blanking of Lead Frame (II): Determination of Optimal Process Condition (리드 프레임 타발공정의 전단특성에 관한 연구(II) - 최적 전단 조건의 선정)

  • 서의권;임상헌;심현보
    • Transactions of Materials Processing
    • /
    • v.11 no.2
    • /
    • pp.132-137
    • /
    • 2002
  • Using the Taguchi method, optimum process condition of lead frame blanking has been determined in the point of view of shape of blanked profile. As the main process parameters, clearance, strip holding pressure and bridge width are selected. According to the orthogonal array table, three levels of experiment have been carried out for each factor. The optimal blanking condition is analyzed with the SN ratio. It has been verified that the optimal Process condition can be determined with a combination of basic blanking experiment and experiment design method. Both the effect of each factor and gain can be judged in the quantitative manner from the analysis of SN ratio.

Blank Shape Design Process for a Hot Stamped Front Pillar and its Experimental Verification (프론트필러의 핫스템핑 공정설계를 위한 블랭크형상의 최적화 연구)

  • Kim, J.T.;Kim, B.M.;Kang, C.G.
    • Transactions of Materials Processing
    • /
    • v.21 no.3
    • /
    • pp.186-194
    • /
    • 2012
  • Hot stamping is a forming method that offers various advantages such as superior mechanical properties, good formability, and very small springback. However, relatively large-sized parts, such as front pillars, exhibit poor formability when hot stamped due to the limited material flow and thickness reduction imparted by the process. This reduction in thickness can also lead to cracks. One of the reasons is the relatively high friction between the sheet and the die. In this study, in order to obtain the optimal conditions for hot stamping of front pillars, various process parameters were studied and analyzed using the sheet forming software, J-STAMP. The effects of various parameters such as the die structure, blank shape, blank holding force, punch speed, clearance(upper and lower dies) and distance block were analyzed and compared.

A Study on the Lubrication effects of surface roughness (표면조도가 윤활효과에 미치는 영향에 관한 연구)

  • 윤재복;윤문철
    • Tribology and Lubricants
    • /
    • v.3 no.1
    • /
    • pp.18-25
    • /
    • 1987
  • The influence of one sided striated surface roughness on load carrying capacity of a slider bearing is analyzed for very low clearance films. A Reynolds equation appropriate for slider bearing is derived and analyzed by the method of finite difference method. For a slider bearing with several simple roughness form, the pressure, load capacity and other parameters can be revealed and also this results can be stored in sequential data file. After all, their distribution can be displayed easily by using the CADG(Computer Aided Design and Graphics) program. Also exact solutions with this nemerical method are compared with those of the theory attributed to Tonder and White. The results reported here should find application in the computer peripherals where computer aided design and graphic package is needed.

HUMAN-CENTERED DESIGN OF A STOP-AND-GO VEHICLE CRUISE CONTROL

  • Gu, J.S.;Yi, S.;Yi, K.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.619-624
    • /
    • 2006
  • This paper presents design of a vehicle stop-and-go cruise control strategy based on analyzed results of the manual driving data. Human drivers driving characteristics have been investigated using vehicle driving data obtained from 100 participants on low speed urban traffic ways. The control algorithm has been designed to incorporate the driving characteristics of the human drivers and to achieve natural vehicle behavior of the controlled vehicle that would feel comfortable to the human driver under low speed stop-and-go driving conditions. Vehicle following characteristics of the cruise controlled vehicle have been investigated using a validated vehicle simulator and real driving radar sensor data.

A Design for Dynamic Line Rating System to increase Overhead Transmission Line Capacities (가공송전선의 송전용량을 증가시키기 위한 동적송전용량 시스템의 설계)

  • Kim, Sung-Duck
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.72-77
    • /
    • 2011
  • Dynamic Line Rating (DLR) techniques have been greatly worthy of notice for efficiently increasing transmission capacity as well as controlling load-flow in overhead transmission lines, in comparison with the existing power system operating with Static Line Rating (SLR). This paper describes an utilization method to implement DLR control system for old transmission lines built in the first stage using the ground clearance design standard with lower dips. The suggested DLR system is focused on designing as temperature control system rather than current/load control system. Based on several performance for conductor temperatures, it is shown that DLR system with efficiency can be implemented.

Crankshaft Bearing Design Adapting Continuous Oil Supply System (연속오일공급 형태의 크랭크샤프트 베어링 설계)

  • Yun Jeong-Eui
    • Tribology and Lubricants
    • /
    • v.20 no.2
    • /
    • pp.84-90
    • /
    • 2004
  • It is very important to improve the durability and reliability of crankshaft because of conflicting demands for lower fuel consumption and higher power output. In this study, for the crankshaft bearing design, analyses were conducted to determine the lubrication characteristics such as oil flow rate, minimum oil film thickness, friction force and increase of oil temperature at main bearing and connecting rod bearing. Additionally, supplied oil pressure and temperature effects on the bearings were simulated to figure out lubrication characteristics on the bearings. Finally the effects of increasing the bearing width and clearance were introduced on the lubrication characteristics.

NUMERICAL STUDY ON WIND TUNNEL GROUND PLATE WITH A PRESSURE CONTROL DEVICE (압력 조절 장치를 갖는 풍동 지면판에 관한 수치해석적 연구)

  • Lee, M.J.;Kim, C.W.
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.53-59
    • /
    • 2010
  • Preliminary design of a ground plate, a device installed close to the aircraft model for wind tunnel test to simulate the ground effect, was performed by a numerical simulation. A two-dimensional numerical study was performed initially to decide the optimal leading edge and flap configurations. Then, three-dimensional studies were conducted to decide the optimal flap deflection angle for pressure distribution reduction since the plate and the plate supporting system generate static pressure difference between the upper and lower flow regions. Three-dimensional simulation additionally studied the effect of the clearance between the plate and the wind tunnel side wall. For the efficiency of computation, half model was simulated and a symmetric boundary condition was applied on the center plane. Based on the preliminary design, a ground plate was designed, manufactured and tested at the Korea Aerospace Research Institute(KARI) wind tunnel. The measured pressure differences versus flap deflection angle agreed well with the predicted results.

Design of a Wheel Bearing Unit Using Taguchi Method (다구찌 방법을 이용한 휠 베어링 유니트의 형상설계)

  • 안태길;이상훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.10
    • /
    • pp.164-168
    • /
    • 2003
  • An automotive wheel bearing is one of the most important components to guarantee the service life of a passenger car. The endurance life of a bearing is affected by many parameters such as material properties, heat treatment, lubrication conditions, operating temperature, loading conditions, bearing geometry, the internal clearance of bearing and so on. In this paper, we analyze the relation between loads and deformations of wheel bearing units for optimal bearing unit design. On the basis of it, we calculate the endurance life of w heel bearing units and analyze the contribution of bearing geometric parameters on the endurance life by using Taguchi method.

A Study on Tootk Design Program Development of Gerotor Pump/Motor (지로터 펌프/모터의 치형설계 프로그램 개발에 관한 연구)

  • 장주섭;이종원;한동철;조명래
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.17-23
    • /
    • 1996
  • Gerotor Pump and Motors are widely used in lubrication and hydraulic actuator systems, These have many advantage compared with internal gear pump and motors, But the gerotor profile have not been sufficiently analyzed theoretically. So it is vary difficult for designer to decide the specifications of the gerotor profile, and it is not yet confirmed to calculating flow rate and minimum distance of clearance in the contact point of inner and outer rotor. In this paper, When we design inner and outer rotor concurently, We have analyzed the gerotor and displayed the calculated results such as flow rate, minumum distance between inner and outer rotor and gerotor profiles

  • PDF