• 제목/요약/키워드: Cleaning robots

검색결과 63건 처리시간 0.024초

자율청소로봇 성능평가 표준화에 관한 연구 (A Study on Standardization of Performance Evaluation for Autonomous Cleaning Robot)

  • 유재창;홍주표;임성수;이순걸;박광호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1054-1059
    • /
    • 2005
  • To support the expansion of the autonomous robot market, the establishment of evaluation standards of the robot performance are essential. In this paper, to venture the standardization of the performance evaluation of the autonomous robot, the authors take the autonomous cleaning robot(ACR) as the initial stepping stone. Recently, the ACR has been being developed and marketed actively in many countries including Korea and it believes to be the fore-runner among various types of autonomous robot products. Standards of the performance evaluation for the ACR could be easily modified and applied to other autonomous robots. This paper formulates and suggests a group of standards for the performance evaluation based on a evaluation platform for the ACR. The newly developed performance evaluation platform has been designed to include all the important aspects of living environments in reality. In the platform the performance of the ACR is measured in terms of mobility, cleaning performance, avoidance of obstruction(safety), and operation noise. A few commercially available ACR products are collected and tested in the evaluation platform and compared against the performance evaluation standards formulated.

  • PDF

A Mobile Robot Based on Slip Compensating Algorithm for Cleaning of Stud Holes at Reactor Vessel in NPP

  • Kim, Dong Il;Moon, Young Jun
    • 한국압력기기공학회 논문집
    • /
    • 제16권1호
    • /
    • pp.84-91
    • /
    • 2020
  • The APR1400 reactor stud holes can be stuck due to high temperatures, high pressure, prolonged engagement, and load changes according to pressure changes in the reactor. Threaded surfaces of a stud hole should be cleaned for the sealing of pressure in reactor vessel by removing any foreign materials which may exist in the stud holes. Human workers can access to the stud hole for the cleaning of stud holes manually, but the radiation exposure of human workers is increased. Robot is an effective way to work in hazardous area. So we introduced robot for the cleaning of stud holes. Localization of mobile robots is generally based on odometry, but with increased mileage, position errors can be accumulated. In order to eliminate cumulative error and to ensure stability of its driving, laser sensors and new control algorithm were utilized. The distance between the robot and the wall was measured by laser sensors, and the control algorithm was implemented so as to travel the desired trajectory by using the measured values from sensors. The performance of driving and hole sensing were verified through field application, and mobile robot was confirmed to be applicable to the APR 1400 NPP.

문법적 진화기법과 조건부 확률을 이용한 청소 로봇의 이동 패턴 계획 (Designing the Moving Pattern of Cleaning Robot based on Grammatical Evolution with Conditional Probability Table)

  • 권순조;김현태;안창욱
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권4호
    • /
    • pp.184-188
    • /
    • 2016
  • 청소 로봇은 가정에서 사용 가능한 대표적인 지능형 로봇이다. 고가형 청소 로봇은 센서로부터 정보를 제공받아 높은 커버리지 성능을 가진 알고리즘이 존재하지만, 저가형의 청소 로봇엔 적용하기 어렵다. 본 논문은 저가형의 청소 로봇과 같은 환경에서 효율적인 움직임을 구현하기 위해 문법적 진화기법 기반의 청소 로봇의 이동 패턴을 계획하는 알고리즘을 제안한다. 이를 위해 배커스-나우르 표기법을 사용하여 이동 패턴 문법을 정의하고 진화연산을 통해 최적화된 프로그램을 생성하였다. 이와 더불어 프로그램 생성 과정에서 획득한 문법 요소 간 조건부 확률 정보를 활용하였다. 제안 알고리즘의 성능 검증을 위해 청소 로봇 시뮬레이션을 활용하여 기존 알고리즘과 성능을 비교하였으며 실험 결과를 통해 본 논문에서 제안한 기법의 효율성을 확인하였다.

관로 청소 로봇의 최적 설계 (Optimal Mechanism Design of In-pipe Cleaning Robot)

  • 정창두;정원지;안진수;신기수;권순재
    • 한국생산제조학회지
    • /
    • 제21권1호
    • /
    • pp.123-129
    • /
    • 2012
  • Recently, interests on cleaning robots workable in pipes (termed as in-pipe cleaning robot) are increasing because Garbage Automatic Collection Facilities (i.e, GACF) are widely being installed in Seoul metropolitan area of Korea. So far research on in-pipe robot has been focused on inspection rather than cleaning. In GACF, when garbage is moving, the impurities which are stuck to the inner face of the pipe are removed (diameter: 300 mm or 400 mm). Thus, in this paper, by using TRIZ (Inventive Theory of Problem Solving in Russian abbreviation), an in-pipe cleaning robot of GACF with the 6-link sliding mechanism will be proposed, which can be adjusted to fit into the inner face of pipe using pneumatic pressure(not spring). The proposed in-pipe cleaning robot for GACF can have forward/backward movement itself as well as rotation of brush in cleaning. The robot body should have the limited size suitable for the smaller pipe with diameter of 300 mm. In addition, for the pipe with diameter of 400 mm, the links of robot should stretch to fit into the diameter of the pipe by using the sliding mechanism. Based on the conceptual design using TRIZ, we will set up the initial design of the robot in collaboration with a field engineer of Robot Valley, Inc. in Korea. For the optimal design of in-pipe cleaning robot, the maximum impulsive force of collision between the robot and the inner face of pipe is simulated by using RecurDyn(R) when the link of sliding mechanism is stretched to fit into the 400 mm diameter of the pipe. The stresses exerted on the 6 links of sliding mechanism by the maximum impulsive force will be simulated by using ANSYS$^{(R)}$ Workbench based on the Design Of Experiment(in short DOE). Finally the optimal dimensions including thicknesses of 4 links will be decided in order to have the best safety factor as 2 in this paper as well as having the minimum mass of 4 links. It will be verified that the optimal design of 4 links has the best safety factor close to 2 as well as having the minimum mass of 4 links, compared with the initial design performed by the expert of Robot Valley, Inc. In addition, the prototype of in-pipe cleaning robot will be stated with further research.

웨어러블 로봇의 기술 현황 조사 및 개발 방향 제안 연구 (Research on Technology Status and Development Direction of Wearable Robot)

  • 김혜숙;구다솜;남윤자;조규진;김선영
    • 한국의류산업학회지
    • /
    • 제21권5호
    • /
    • pp.640-655
    • /
    • 2019
  • Technology status was investigated by analyzing patents and development cases of wearable robots. Development direction of wearable robot for wearability was also suggested by understanding the problems of wearability from development cases through the FGI technique. The number of patents per technical field was the most in the field of strength support, but AI in the technology field was different in each country; Korea was found to be poor in the category of daily living assistance. The number of patents by technology category was the most in the category of muscular strength assistance. However, the values of AI in the technology category were different in each country; Korea was found to be poor in the category of daily living assistance. Development cases were focused on rehabilitation, so development is not fulfilled uniformly by use purpose. By wearing body parts, robots with single function type were mainly developed. Rigid material robots were mainly developed. It was confirmed that wearable robot technology is not developed evenly in the category of application because it is in the early stage of the technical proposal and centered on main performance improvement. We derived twelve wearable conditions for wearable robots: Shape and Size Appropriateness, Movement Appropriateness, Composition Appropriateness, Physiological Appropriateness, Performance Satisfaction, Ease of Operation, Safety, Durability, Ease of Dressing, Ease of Cleaning, Portability and Ease of Storage and Appearance Satisfaction. Finally, the development direction of a wearable robot for each wearable condition was suggested.

3 자유도 물고기 로봇의 동적해석 및 운동파라미터 최적화에 관한 연구 (A Study on Optimization of Motion Parameters and Dynamic Analysis for 3-D.O.F Fish Robot)

  • 김형석;;이병룡;유호영
    • 대한기계학회논문집A
    • /
    • 제33권10호
    • /
    • pp.1029-1037
    • /
    • 2009
  • Recently, the technologies of mobile robots have been growing rapidly in the fields such as cleaning robot, explosive ordnance disposal robot, patrol robot, etc. However, the researches about the autonomous underwater robots have not been done so much, and they still remain at the low level of technology. This paper describes a model of 3-joint (4 links) fish robot type. Then we calculate the dynamic motion equation of this fish robot and use Singular Value Decomposition (SVD) method to reduce the divergence of fish robot's motion when it operates in the underwater environment. And also, we analysis response characteristic of fish robot according to the parameters of input torque function and compare characteristic of fish robot with 3 joint and fish robot with 2 joint. Next, fish robot's maximum velocity is optimized by using the combination of Hill Climbing Algorithm (HCA) and Genetic Algorithm (GA). HCA is used to generate the good initial population for GA and then use GA is used to find the optimal parameters set that give maximum propulsion power in order to make fish robot swim at the fastest velocity.

RFID를 이용한 이동로봇의 위치인식기술 (Localization of Mobile Robot Based on Radio Frequency Identification Devices)

  • 이현정;최규천;이민철;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.41-46
    • /
    • 2006
  • Ubiquitous location based services, offer helpful services anytime and anywhere by using real-time location information of objects based on ubiquitous network. Particularly, autonomous mobile robots can be a solution for various applications related to ubiquitous location based services, e.g. in hospitals, for cleaning, at airports or railway stations. However, a meaningful and still unsolved problem for most applications is to develop a robust and cheap positioning system. A typical example of position measurements is dead reckoning that is well known for providing a good short-term accuracy, being inexpensive and allowing very high sampling rates. However, the measurement always has some accumulated errors because the fundamental idea of dead reckoning is the integration of incremental motion information over time. The other hand, a localization system using RFID offers absolute position of robots regardless of elapsed time. We construct an absolute positioning system based on RFID and investigate how localization technique can be enhanced by RFID through experiment to measure the location of a mobile robot. Tags are placed on the floor at 5cm intervals in the shape of square in an arbitrary space and the accuracy of position measurement is investigated . To reduce the error and the variation of error, a weighting function based on Gaussian function is used. Different weighting values are applied to position data of tags since weighting values follow Gaussian function.

Potential Field를 이용한 자율이동로봇의 경로 계획에 관한 연구 (Study on Path Planning for Autonomous Mobile Robot using Potential Field)

  • 정광민;이희재;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권5호
    • /
    • pp.737-742
    • /
    • 2009
  • 청소 로봇, 관광 안내 로봇부터 우주 탐사로봇까지 자율이동로봇의 응용분야가 넓어짐에 따라서 자율이동로봇의 인기는 급속도로 높아지고 있다. 하지만 동적인 환경 내에서 자율이동로봇의 안전한 네비게이션을 위한 만족스러운 제어 알고리즘은 여전히 연구 과제이다. 본 논문에서는 새로운 Potential field method를 이용한 제어 방법을 제안하였고, 컴퓨터 시뮬레이션을 통해 제안한 알고리즘을 실행하고 분석하였고, 이 실험 결과들로서 Potential field method를 사용한 행동(behavior)에 기반한 제어 시스템의 유효성을 나타내었다.

스마트 온실 방제 로봇의 요구조건을 고려한 평가 방법 연구 (The Study on Evaluation Method of Pest Control Robot Requirements for Smart Greenhouse)

  • 김경철;유범상;이시영;김국환;이명훈;홍영기;김현종;유병기
    • 한국산학기술학회논문지
    • /
    • 제20권10호
    • /
    • pp.318-325
    • /
    • 2019
  • 최근, 스마트 농업에 대한 관심이 증가함에 따라 농업 자동화 및 로봇에 대한 연구개발이 증가하고 있다. 스마트 온실에서 사용되는 로봇은 작업 특성과 생육 환경이 고려되어야 한다. 이를 위해 스마트 온실의 환경 분석을 통해 개발되어진 방제 로봇들을 대상으로 하였다. 본 논문은 스마트 온실에 적용 가능한 방제 로봇의 요구조건을 고려한 평가방법에 대한 연구를 수행하였다. 로봇의 요구조건을 통하여 성능 및 품질 평가 기준을 수립하고 시험을 실시하였다. 로봇관련 표준을 참고하여 방제 로봇의 요구 기능과 목표를 도출하였다. 로봇의 성능을 위해 주행과 작업 능력 시험을 실시하였다. 주행시험은 로봇의 주행성능에 대한 시험을 실시하였고 작업능력은 방제성능에 대한 시험을 실시하였다. 로봇의 품질을 위해 내구성 시험을 실시하였다. 시험결과를 통하여 스마트 온실 로봇에게 요구되는 지표들을 도출할 수 있었다. 이를 통해 스마트 온실에 적용하기 위한 다양한 로봇들의 평가 기준이 될 것으로 판단된다.

고층빌딩 외벽 유지관리 로봇 시스템 조사연구 (A Survey on Robot Systems for High-rise Building Wall Maintenance)

  • 문성민;허재명;이승훈;강성필;한창수;홍대희
    • 한국정밀공학회지
    • /
    • 제30권4호
    • /
    • pp.359-367
    • /
    • 2013
  • With recent growth of the economy and development of construction technology, the increase of high-rise buildings is appearing rapidly in urban areas. For this reason, the interest in building maintenance has also been increasing. However, it has many safety problems because it is difficult for the workers to access the exterior wall of building. Therefore, the maintenance system of high-rise building stands out as being important issues to be developed, so that a variety of robot systems have been developed to accomplish the building-wall maintenance works. In this paper, the maintenance robots are classified in painting, inspecting, cleaning systems according to the maintenance works. Then, their locomotion and adhesion mechanisms are analyzed including their applicability to the real maintenance works. This study can be used to develop maintenance robotic system that is more efficient and stable than existing ones.