• Title/Summary/Keyword: Cleaning agents

Search Result 117, Processing Time 0.033 seconds

A Study of Bleaching Method of Excavated Fabrics -Conservation Treatment of Excavated Costumes at Kwangju- (출토직물의 표백방법에 관한 연구 -광주 장흥임씨 의복(중요민속자료 112호)의 보존처리-)

  • Hong Moom-Kyung;Lee Mee-Sik;Bae Soon-Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.30 no.2 s.150
    • /
    • pp.338-347
    • /
    • 2006
  • Due to the complex environment in the ground, most of excavated costumes undergo deterioration and color change. To reduce the extent and intensity of the staining and to recover the original color or gray fabrics of excavated costumes, bleaching would be required. Excavated historical costumes are very delicate in nature, therefore, special care is needed in bleaching process. Several bleaching agents were selected and applied to the control cotton fabric and pre-deteriorated cotton fabrics to examine the change of color and physical properties after bleaching. A dual bleaching using hydrogen peroxide and sodiumborohydride showed the superior bleaching effect to the other bleaching agents. The strength of pre-deteriorated fabrics slightly increased after dual bleaching. The six historical costumes which belonged to General Duk-Ryung Kim's nephew's wife were dual bleached. They became remarkably cleaned and brightened. The treatments improved the appearance of costumes. By microscopic investigation, it is found that costumes did not show the damage after treatment. In conclusion, it is possible to bleach historical textiles without damage using appropriate bleaching agents like hydrogen peroxide and sodiumborohydride.

Evaluation of removal forces of implant-supported zirconia copings depending on abutment geometry, luting agent and cleaning method during re-cementation

  • Rodiger, Matthias;Rinke, Sven;Ehret-Kleinau, Fenja;Pohlmeyer, Franziska;Lange, Katharina;Burgers, Ralf;Gersdorff, Nikolaus
    • The Journal of Advanced Prosthodontics
    • /
    • v.6 no.3
    • /
    • pp.233-240
    • /
    • 2014
  • PURPOSE. To evaluate the effects of different abutment geometries in combination with varying luting agents and the effectiveness of different cleaning methods (prior to re-cementation) regarding the retentiveness of zirconia copings on implants. MATERIALS AND METHODS. Implants were embedded in resin blocks. Three groups of titanium abutments (pre-fabricated, height: 7.5 mm, taper: $5.7^{\circ}$; customized-long, height: 6.79 mm, taper: $4.8^{\circ}$; customized-short, height: 4.31 mm, taper: $4.8^{\circ}$) were used for luting of CAD/CAM-fabricated zirconia copings with a semi-permanent (Telio CS) and a provisional cement (TempBond NE). Retention forces were evaluated using a universal testing machine. Furthermore, the influence of cleaning methods (manually, manually in combination with ultrasonic bath or sandblasting) prior to re-cementation with a provisional cement (TempBond NE) was investigated with the pre-fabricated titanium abutments (height: 7.5 mm, taper: $5.7^{\circ}$) and SEM-analysis of inner surfaces of the copings was performed. Significant differences were determined via two-way ANOVA. RESULTS. Significant interactions between abutment geometry and luting agent were observed. TempBond NE showed the highest level of retentiveness on customized-long abutments, but was negatively affected by other abutment geometries. In contrast, luting with Telio CS demonstrated consistent results irrespective of the varying abutment geometries. Manual cleaning in combination with an ultrasonic bath was the only cleaning method tested prior to re-cementation that revealed retentiveness levels not inferior to primary cementation. CONCLUSION. No superiority for one of the two cements could be demonstrated because their influences on retentive strength are also depending on abutment geometry. Only manual cleaning in combination with an ultrasonic bath offers retentiveness levels after re-cementation comparable to those of primary luting.

Effect of Interfacial Properties on the Detergency in Dishwashing Agent Composition (식기용 세정제 조성에 있어서 계면물성이 세정력에 미치는 영향)

  • Oh, Hyun-Joo;Lim, Hyo-Seon;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.193-199
    • /
    • 2020
  • The effects of the composition of the dishwashing detergent on interfaces of the oil (O) and the aqueous (W) solution in addition to the cleaning effects of interfacial properties were investigated. Also, the cleaning power of the oil contaminated on the surface of the dish according to each composition and the residuals of the contaminants and the cleaning agent after the washing rinses were evaluated. The removal of contaminated oil on the solid (S) surface in the composition of the cleaning agents used in this study was strongly related to the interfacial properties between the W/O/S, and was particularly dependent on the forward and backward dynamic contact angles. When both contact angles were low at the same time, the permeability of the cleaning solution was so high that the contaminated oil showed a high removal effect. The smaller the interfacial tension of O/W was, the better emulsification of the contaminated oil, the higher the interfacial tension, and the poorer emulsification were achieved. However, the emulsification effect did not significantly affect the cleaning power. In particular, in the case of the cleaner having low interfacial tension, the cleaning material remained on the surface of the solid after washing.

Assessment of Indoor Air Quality of Classroom in School by Means of Source Generation - Case Study (발생원에 따른 일부 학교 교실의 실내공기질 평가 사례연구)

  • Yang Won-Ho;Byeon Jae-Cheol;Kim Young-Hee;Kim Dae-Won;Son Bu-Soon;Lee Jung-Eun
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.979-983
    • /
    • 2005
  • Indoor air quality has been addressed as an important atmospheric environmental issue and has caught attention of the public in recent years in Korea. Good indoor air quality in classrooms favour student's learning ability, teacher and staff's productivity according to other studies. In this study, each classroom at four different schools was chosen for comparison of indoor and outdoor air quality by means of source generation types such as new constructed classroom, using of cleaning agents and purchased furniture. Temperature, relative humidity (RH), carbon dioxide $(CO_2)$, formaldehyde (HCHO), total volatile organic compounds (TVOCs) and particulate matter with diameter less than $10{\mu}m\;(PM_{10})$ were monitored at indoor and outdoor locations during lesson. HCHO was found to be the worst among parameters measured in new constructed classroom, HCHO and TVOCs was worst in classroom with new purchased furniture, and TVOCs was worst in classroom cleaned by cleaning agents, Indoor $(CO_2)$ concentrations often exceeded 1500 ppm indicating importance of ventilation. Active activity of students during break time made the $PM_{10}$ concentration higher than a lesson, Improvements and further researches should be carried out considering indoor air quality at schools is of special concern since children and students are susceptible to poor air quality.

Preparation of Water-Resistant Hydrophilic Coating Solutions for PET film (내수성이 우수한 PET 필름용 친수성 코팅액의 제조)

  • Lee, Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.4
    • /
    • pp.584-594
    • /
    • 2014
  • To increase of surface hydrophilicity of polymeric thin films is an important approaching technique for introduction of self-cleaning and/or antifogging properties on the surfaces of those films. In general, hydrophilic surface can be produced by coating non ionic surfactants or by increasing surface energy. Various non-ionic surfactants, such as Tween, Span, and PEG-PPG block copolymers were selected for our experiments, because they are cheap and well soluble in toluene system as well as they contain several reactive hydroxy fuctional groups with coupling agents. Blending conditions influence the PET film surface hydrophilicities. However, the introduction of only these surfactants on the surface of PET films did not show the high durability of hydrophilic properties after washing with water. To improve the durability two types of coupling agents such as epoxide and diisocyanate were adopted. Contact angle of water on hydrophilically coated PET film surface with 6 wt% of isophrone diisocyanate(IPDI) containing coating solution was reached to $8.7^{\circ}$, which was an indirect evidence for very high surface hydrophilicity. A light(500 nm of wavelength) transmittance value of coated PET film was changed only from 87% to 85% with keeping a good transparent property. This film can be usable for self-cleaning film industries.

Effects of the Wet Cleaning to the Color Change of the Dyed Fabrics with Natural Dyes (천연염색포의 습식세척에 의한 색상변화)

  • Baek, Young-Mee;Goto-Doshida, Sumiko;Saito, Masako
    • Journal of Conservation Science
    • /
    • v.28 no.1
    • /
    • pp.21-27
    • /
    • 2012
  • In the Chosun period, the noble class usually buried the dead bodies in the lime-covered tomb. Recently their costumes are excavated while maintaining the shape. However, the textiles discovered from the inside have been degradated by a body and moisture. To conserve these textiles one of the most important thing is how to clean these textiles right after the excavation. The purpose of this study is to examine the effects of wet cleaning to minimize the color change of textile remains. For this purpose, silk and cotton were dyed with natural dyes (7 red, 1 blue, 6 yellow, 4 green and 4 purple colors), then they were kept for 6 months with pork meat at $10^{\circ}C$, and were washed by four cleaning solutions (water, anionic surfactant (SDS), non-ionic surfactant (Triton X-100) and natural surfactant (saponin)) at $20^{\circ}C$ and $40^{\circ}C$. The color change was evaluated by color difference (${\Delta}E$) between non-treated and after washed samples. From the results, it was found that the color changes are significantly different depending on the washing temperature, textile material, the cleaning agents and the type of dyes.

A Study on Laboratory Treatment of Metalworking Wastewater Using Ultrafiltration Membrane System and Its Field Application (한외여과막시스템을 이용한 금속가공폐수의 실험실적 처리 및 현장 적용 연구)

  • Bae, Jae Heum;Hwang, In-Gook;Jeon, Sung Duk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.487-494
    • /
    • 2005
  • Nowadays a large amount of wastewater containing metal working fluids and cleaning agents is generated during the cleaning process of parts working in various industries of automobile, machine and metal, and electronics etc. In this study, aqueous or semi-aqueous cleaning wastewater contaminated with soluble or nonsoluble oils was treated using ultrafiltration system. And the membrane permeability flux and performance of oil-water separation (or COD removal efficiency) of the ultrafiltration system employing PAN as its membrane material were measured at various operating conditions with change of membrane pore sizes and soil concentrations of wastewater and examined their suitability for wastewater treatment contaminated with soluble or insoluble oil. As a result, in case of wastewater contaminated with soluble oil and aqueous or semi-aqueous cleaning agent, the membrane permeability increased rapidly even though COD removal efficiency was almost constant as 90 or 95% as the membrane pore size increased from 10 kDa to 100 kDa. However, in case of the wastewater contaminated with nonsoluble oil and aqueous or semi-aqueous cleaning agent, as the membrane pore size increased from 10 kDa to 100 kDa and the soil concentration of wastewater increased, the membrane permeability was reduced rapidly while COD removal efficiency was almost constant. These phenomena explain that since the membrane material is hydrophilic PAN material, it blocks nonsoluble oil and reduces membrane permeability. Thus, it can be concluded that the aqueous or semi-aqueous cleaning solution contaminated with soluble oil can be treated by ultrafiltration system with the membrane of PAN material and its pore size of 100 kDa. Based on these basic experimental results, a pilot plant facility of ultrafiltration system with PAN material and 100 kDa pore size was designed, installed and operated in order to treat and recycle alkaline cleaning solution contaminated with deep drawing oil. As a result of its field application, the ultrafiltration system was able to separate aqueous cleaning solution and soluble oil effectively, and recycle them. Further more, it can increase life span of aqueous cleaning solution 12 times compared with the previous process.

Dyeing of Wool and Nylon Fabrics with Chinese Scholar Tree Extract (괴화 추출물에 의한 모와 나일론직물의 염색성)

  • 배정숙;허만우
    • Journal of the Korean Home Economics Association
    • /
    • v.41 no.2
    • /
    • pp.107-121
    • /
    • 2003
  • This study was discussed the dyeing of wool and nylon fabrics with Chinese Scholar Tree extract. The extracts of Chinese Scholar Tree was prepared in the condition of heating at $95{\pm}5C$, for 1 hour and cooling to 40C. And then the extracts of color matter treate with vacuum concentration at $60{\pm}2^{\circ}C$, 30mmHg and dried with spray dryer. The dyeing of wool and nylon fabric in this experiment was also employed the mordant dyeing method such as pre-mordant, post-mordant and simultaneous mordant method. The mordanting agents used in this study were as followings ; aluminium potassium sulfate, copper(II) acetate monohydrate, chromium potassium sulfate$.$$7H_2O$, Tin(II) chloride dihydrate, iron(II)sulfate $7H_2O$. For an evaluation of the dyeing property of the mordanting agents, the pre-mordant method, the repeat dyeing and the fastness of the light, dry cleaning, washing and rubbing measured respectively. From the results of the dye absorption, the optimum dyeing condition of the wool and nylon fabrics with Chinese Scholar Tree extract is at 80C dyeing temperature for 60 minutes. The optimum concentration of mordanting agent is Al, Cr, Sn 1%, Fe, Cu 2% solution. In general, the fastness property of the dyed wool and nylon fabrics had a comparatively high grade.

Preparation of Solvent-Free Low Foaming Scouring Agents and Their Scouring Characteristics (무용제형 저기포성 정련제의 제조 및 정련특성)

  • Park, Hong-Soo;Ahn, Sung-Hwan;Shim, Il-Woo;Jo, Hye-Jin;Hahm, Hyun-Sik;Kim, Yeoung-Chan;Kim, Seong-Kil
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.37-44
    • /
    • 2006
  • Solvent-free low foaming scouring agents (LFSC) were prepared by blending of 2-ethylhexylaminoethyl sulfate (2-EHAS), POE(10) octadecylbenzyl- ammonium chloride (POBAC) and Sedlan FF-200 (FF-200). As the results of several tests, 2-EHAS/POBAC/FF-200/water (8g/12g/20g/60g) mixture (LFSC-5) showed good cleaning power, penetrating ability and stability to alkali, and gave less problem in water pollution. The foaming power of LFSC-5 measured by Ross and Miles method was 8mm foam height immediately after foaming, and that measured by Ross and Clark method was less than 300mm foam height at $30^{\circ}C$, and 18mm at $80^{\circ}C$. As a result, LFSC-5 proved a good low foaming scouring agent for fiber.

A novel method of surface modification to polysulfone ultrafiltration membrane by preadsorption of citric acid or sodium bisulfite

  • Wei, Xinyu;Wang, Zhi;Wang, Jixiao;Wang, Shichang
    • Membrane and Water Treatment
    • /
    • v.3 no.1
    • /
    • pp.35-49
    • /
    • 2012
  • In membrane processes, various agents are used to enhance, protect, and recover membrane performance. Applying these agents in membrane modification could potentially be considered as a simple method to improve membrane performance without additional process. Citric acid (CI) and sodium bisulfite (SB) are two chemicals that are widely used in membrane feed water pretreatment and cleaning processes. In this work, preadsorptions of CI and SB were developed as simple methods for polysulfone ultrafiltration membrane modification. It was found that hydrogen bonding and Van Der Waals attraction could be responsible for the adsorptions of CI and SB onto membranes, respectively. After modification with CI or SB, the membrane surfaces became more hydrophilic. Membrane permeability improved when modified by SB while decreased a little when modified by CI. The modified membranes had an increase in PEG and BSA rejections and better antifouling properties with higher flux recovery ratios during filtration of a complex pharmaceutical wastewater. Moreover, membrane chlorine tolerance was elevated after modification with either agent, as shown by the mechanical property measurements.