DOI QR코드

DOI QR Code

Effect of Interfacial Properties on the Detergency in Dishwashing Agent Composition

식기용 세정제 조성에 있어서 계면물성이 세정력에 미치는 영향

  • Oh, Hyun-Joo (Mamaforest, B210-1 Glocal SanHak center, Dankook university) ;
  • Lim, Hyo-Seon (Mamaforest, B210-1 Glocal SanHak center, Dankook university) ;
  • Kim, Young-Ho (Department of Chemical engineering, Hankyong National University)
  • Received : 2019.12.02
  • Accepted : 2020.03.13
  • Published : 2020.04.10

Abstract

The effects of the composition of the dishwashing detergent on interfaces of the oil (O) and the aqueous (W) solution in addition to the cleaning effects of interfacial properties were investigated. Also, the cleaning power of the oil contaminated on the surface of the dish according to each composition and the residuals of the contaminants and the cleaning agent after the washing rinses were evaluated. The removal of contaminated oil on the solid (S) surface in the composition of the cleaning agents used in this study was strongly related to the interfacial properties between the W/O/S, and was particularly dependent on the forward and backward dynamic contact angles. When both contact angles were low at the same time, the permeability of the cleaning solution was so high that the contaminated oil showed a high removal effect. The smaller the interfacial tension of O/W was, the better emulsification of the contaminated oil, the higher the interfacial tension, and the poorer emulsification were achieved. However, the emulsification effect did not significantly affect the cleaning power. In particular, in the case of the cleaner having low interfacial tension, the cleaning material remained on the surface of the solid after washing.

식기세정용 세정제의 조성에 따른 오일(O) 및 세정수용액(W)의 계면의 물성에 미치는 영향을 조사하였으며 계면물성에 따른 세정효과를 검토하였다. 또한 각 조성에 따른 식기표면에 오염된 오일의 세정력과 세척 헹굼 후 오염물 및 세척제의 잔류성에 대한 평가를 하였다. 본 연구에서 사용된 세정제의 조성에 있어서 고체표면에 오염된 오일의 제거는 세척액/오일/고체 간의 계면물성과 깊은 관련이 있었으며, 특히 전진 및 후진 동적접촉각에 크게 의존하였다. 전진 및 후진접촉각이 동시에 낮은 경우에 세정액의 침투성이 매우 커서 고체표면에 오염된 오일의 제거효과가 높았으며 세척 후 오염물의 잔류가 거의 없었다. O/W의 계면장력이 작을수록 오염된 오일의 유화가 잘 되었으며 계면장력이 높을수록 유화가 잘 이루어지지 않았다. 그러나 본 연구에서는 유화효과는 세척력에 크게 영향을 미치지 못하였으며 특히 낮은 계면장력을 갖는 세정제의 경우 세척 후 세정제 물질이 피세척물의 표면에 잔류하는 문제점이 있었다.

Keywords

References

  1. J. Falbe, Surfactants in Consumer Products: Theory, Technology and Application, 1st ed., 14-18, Verlag GmbH & Co, NY, USA (1986).
  2. K. Kou, New Surfactant, 1st ed., 19, Sehwa Publishing, Japan (1983).
  3. D. Myers, Surfactant Science and Technology, 1st ed., 11-12, VCH Publishers Inc., NY, USA (1988).
  4. M. J. Rosen, Surfactant and Surface Phenomena, 1st ed., 3-4, Kodamsa Science Technology, Japan (1988).
  5. D. Myers, Surfaces, Interfaces, and Colloids, 1st ed., 25-27, VCH Publishers Inc., NY, USA (1990).
  6. D. Myers, Surfaces, Interfaces, and Colloids, 1st ed., 30-33, VCH Publishers Inc., NY, USA (1990).
  7. J. Falbe, Surfactants in Consumer Products: Theory, Technology and Application, 14-18, Verlag GmbH & Co, NY, USA (1986).
  8. D. Attwood and A. T. Florence, Surfactant Systems Their Chemistry, Pharmacy and Biology, 40-49, Chapman and Hall, NY, USA (1983).
  9. K.-Y. Lai, Liquid Detergents, 43, Marcel Dekker, Inc., NY, USA (1996).
  10. R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem., 28, 988-994 (1936). https://doi.org/10.1021/ie50320a024
  11. A. B. D. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc., 40, 546-551 (1944). https://doi.org/10.1039/tf9444000546
  12. W. D. Harkins and A. Feldman, Films. the spreading of liquids and the spreading coefficient, J. Am. Chem. Soc., 44(12), 2665-2685 (1922). https://doi.org/10.1021/ja01433a001
  13. R. Amin and T. N. Smith, Interfacial tension and spreading coefficient under reservoir conditions, Fluid Phase Equilibr., 142(1-2), 231-241 (1998). https://doi.org/10.1016/S0378-3812(97)00213-6
  14. H. W. Fox and W. A. Zisman, The spreading of liquids on low energy surfaces. I. polytetrafluoroethylene, J. Colloid Sci., 5(6), 514-531 (1950). https://doi.org/10.1016/0095-8522(50)90044-4
  15. H. W. Fox and W. A. Zisman, The spreading of liquids on low-energy surfaces. III. Hydrocarbon surfaces, J. Colloid Sci., 7(4), 428-442 (1952). https://doi.org/10.1016/0095-8522(52)90008-1
  16. D. T. Wasan and A. D. Nikolov, Spreading of nanofluids on solids, Nature, 423(6936), 156-159 (2003). https://doi.org/10.1038/nature01591
  17. C.-M. Lehr, H. E. Bodde, J. A. Bouwstra, and H. E. Junginger, A surface energy analysis of mucoadhesion II. Prediction of mucoadhesive performance by spreading coefficients, Eur. J. Pharm. Sci., 1(1), 19-30 (1993). https://doi.org/10.1016/0928-0987(93)90014-2
  18. L. E. Baker, A. C. Pierce, and K. D. Luks, Gibbs energy analysis of phase equilibria, Soc. Pet. Eng. J., 22(05), 731-742 (1982). https://doi.org/10.2118/9806-PA
  19. D. S. Abrams and J. M. Prausnitz, Statistical thermodynamics of liquid mixtures: A new expression for the excess Gibbs energy of partly or completely miscible systems, AIChE Journal, 21(1), 116-128 (1975). https://doi.org/10.1002/aic.690210115
  20. C. C. Chen, H. I. Britt, J. F. Boston, and L. B. Evans, Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems, AIChE Journal, 28(4), 588-596 (1982). https://doi.org/10.1002/aic.690280410
  21. M. Morra, E. Occhiello, and F. Garbassi, Contact abgle hysterisis in oxygen plasma treated poly(tetrafluoroethylene), Langmuir, 5, 872-876 (1989). https://doi.org/10.1021/la00087a050
  22. N. Ogawa, M. Soga, Y. Takada, and I. Nakayama, Nanostructured superhydrophobic surfaces, Jpn. J. Appl. Phys., 32, 35876-3591 (1993).
  23. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe, Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces, Langmuir, 16, 5754-5760 (2000). https://doi.org/10.1021/la991660o
  24. O. Takai, A. Hozumi, Y. Inoue, and T. Komori, An atomic force microscopy study of the surface morphology of hyperbranched poly(acrylic acid) thin films, Bull. Mater. Sci., 20, 1368-1371 (1997).
  25. M. S. Akhter, Effect of solubilization of alcohols on critical micelle concentration of non-aqueous micellar solutions, Colloids Surf. A:Physicochem. Eng. Asp., 157(1-3), 203-210 (1999). https://doi.org/10.1016/S0927-7757(99)00089-8
  26. R. Gamez-Corrales, J.-F. Berret, L. M. Walker, and J. Oberdisse, Shear-thickening dilute surfactant solutions: Equilibrium structure as studied by small-angle neutron scattering, Langmuir, 15(20), 6755-6763 (1999). https://doi.org/10.1021/la990187b
  27. J.-R. Riba and B. Esteban, A simple laboratory experiment to measure the surface tension of a liquid in contact with air, Eur. J. Phys., 35(5), 055003 (2014). https://doi.org/10.1088/0143-0807/35/5/055003
  28. R. G. Picknett and R. Bexon, The evaporation of sessile or pendant drops in still air, J. Colloid Interf. Sci., 61(2), 336-350 (1977). https://doi.org/10.1016/0021-9797(77)90396-4
  29. A. F. Stalder, T. Melchior, M. Muller, D. Sage, T. Blu, and M. Unser, Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops, Colloids Surf. A:Physicochem. Eng. Asp., 364(1-3), 72-81 (2010). https://doi.org/10.1016/j.colsurfa.2010.04.040
  30. O. I. del Rio and A. W. Neumann, Axisymmetric drop shape analysis: Computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops, J. Colloid Interf. Sci., 196(2), 136-147 (1997). https://doi.org/10.1006/jcis.1997.5214
  31. D. Tennant, A test of a modified line intersect method of estimating root length, The Journal of Ecology, 995-1001 (1975).