• Title/Summary/Keyword: Cleaning Efficiency

Search Result 403, Processing Time 0.027 seconds

A Study on the Evaluation of Cleaning Ability Using Optically Stimulated Electron Emission Method (광전자방출(OSEE)법을 이용한 세정성 평가 연구)

  • Min, Hye-Jin;Shin, Jin-Ho;Bae, Jae-Heum
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.95-102
    • /
    • 2008
  • In order to choose alternative environmental-friendly cleaning agents, it is very important in the present point that the systematic selection procedures should be introduced and applied to the industry through the evaluation of their cleaning ability, environmental characteristics, and economical factors, and that the objective and effective evaluation methods of cleanliness should be established for the industry. Thus, a novel cleaning evaluation method utilizing optically stimulated electron emission (OSEE) among various methods of cleaning ability was studied in this study. The contaminants used in this cleaning experiments were flux, solder, grease, cutting oil, and mixed soil of 35% grease and 65% cutting oil. The cleaning agents developed or prepared in our laboratory were employed and their cleaning ability were comparatively evaluated by the OSEE, gravimetry and contact angle methods. The experimental results in this work showed that flux cleaning efficiency measured by the OSEE method was similar to that of the gravimetric method, but that the OSEE method could not be compared with gravimetric method for the case of solder or grease cleaning because the contaminants radiate or absorb ultra-violet light. In case of cutting oil cleaning, the gravimetric method indicated its limitation of cleaning efficiency of cutting oil since it showed cleaning efficiency of 100%, even though residual soil remaining on the substrate surface a little after its cleaning. The comparative experimental results of cleaning ability evaluated by the OSEE- and contact angle measurement methods showed that they were similar in case of cleaning of flux, mixed soil and cutting oil. It was judged that the contact angle measurement method could evaluate the cleaning ability more precisely than the OSEE method for cleaning solder and grease.

  • PDF

Optimization of FPD Cleaning System and Processing by Using a Two-Phase Flow Nozzle (이류체 노즐을 이용한 FPD 세정시스템 및 공정 개발)

  • Kim, Min-Su;Kim, Hyang-Ran;Kim, Hyun-Tae;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.24 no.8
    • /
    • pp.429-433
    • /
    • 2014
  • As the fabrication technology used in FPDs(flat-panel displays) advances, the size of these panels is increasing and the pattern size is decreasing to the um range. Accordingly, a cleaning process during the FPD fabrication process is becoming more important to prevent yield reductions. The purpose of this study is to develop a FPD cleaning system and a cleaning process using a two-phase flow. The FPD cleaning system consists of two parts, one being a cleaning part which includes a two-phase flow nozzle, and the other being a drying part which includes an air-knife and a halogen lamp. To evaluate the particle removal efficiency by means of two-phase flow cleaning, silica particles $1.5{\mu}m$ in size were contaminated onto a six-inch silicon wafer and a four-inch glass wafer. We conducted cleaning processes under various conditions, i.e., DI water and nitrogen gas at different pressures, using a two-phase-flow nozzle with a gap distance between the nozzle and the substrate. The drying efficiency was also tested using the air-knife with a change in the gap distance between the air-knife and the substrate to remove the DI water which remained on the substrate after the two-phase-flow cleaning process. We obtained high efficiency in terms of particle removal as well as good drying efficiency through the optimized conditions of the two-phase-flow cleaning and air-knife processes.

Removal of Cu and Fe Impurities on Silicon Wafers from Cleaning Solutions (세정액에 따른 실리콘 웨이퍼의 Cu 및 Fe 불순물 제거)

  • Kim, In-Jung;Bae, So-Ik
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.80-84
    • /
    • 2006
  • The removal efficiency of Cu and Fe contaminants on the silicon wafer surface was examined to investigate the effect of cleaning solutions on the behavior of metallic impurities. Silicon wafers were intentionally contaminated with Cu and Fe solutions by spin coating and cleaned in different types of cleaning solutions based on $NH_4OH/H_2O_2/H_2O\;(SC1),\;H_2O_2/HCl/H_2O$ (SC2), and/or HCl/$H_2O$ (m-SC2) mixtures. The concentration of metallic contaminants on the silicon wafer surface before and after cleaning was analyzed by vapor phase decomposition/inductively coupled plasma-mass spectrometry (VPD/ICP-MS). Cu ions were effectively removed both in alkali (SC1) and in acid (SC2) based solutions. When $H_2O_2$ was not added to SC2 solution like m-SC2, the removal efficiency of Cu impurities was decreased drastically. The efficiency of Cu ions in SC1 was not changed by increasing cleaning temperature. Fe ions were soluble only in acid solution like SC2 or m-SC2 solution. The removal efficiencies of Fe ions in acid solutions were enhanced by increasing cleaning temperature. It is found that the behavior of metallic contaminants as Cu and Fe from silicon surfaces in cleaning solutions could be explained in terms of Pourbaix diagram.

Study on the Cleaning Screen Printing using Alternative Cleaning Solvent of 1,1,1-TCE, CFC-113 (1,1,1-TCE, CFC-113 대체세정제를 이용한 스크린인쇄 세정연구)

  • Lee, Ki-Chang;Yoon, Cheol-Hun;Hwang, Sung-Kwy;Oh, Se-Young;Lee, Seok-Woo;Ryu, Jung-Wok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.115-122
    • /
    • 1997
  • The field of printing use to pressurization ink using screen gassamer that is called screen printing. Existing cleaning solvent using screen printing are the organic solvents including aromatic compounds carried with poisonous and stench. Besides, cleaning method of current screen printing are for the most part mixed cleaning method of dipping and polish. Using 1,1,1-TCE, CFC-113 alternative system cleaning solvent be substituted for existing cleaning solvent against screen printing ink measured the cleaning efficiency according to gravimetric analysis method and property change of gassamer according to Image Analyzer. Also, Cleaning process system carry with excellent cleaning efficiency studied which was proposed new cleaning process including ultrasonic and vibration cleaning process be substituted for existing mixed cleaning method of dipping and polish.

Acoustic Analysis of High-Frequency Ultrasonic Cleaner

  • Choi, Sunghoon;Kim, Jin Oh;Kim, Yong-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.1E
    • /
    • pp.49-56
    • /
    • 1997
  • Ultrasonic cleaning at high frequency around 1 MHz, called megasonic cleaning, is commonly used to remove particles less than 1 ㎛ by generating high frequency accelerations on the cleaning objects. Cleaning is performed in an ultrasonically-excited liquid contained in a double-structured container. Ultrasonic waves generated by piezoelectric transducers propagate in the outer container and are transmitted through the inner container. The bottom of the inner container is inclined to make oblique incidence of the ultrasonic wave in order to raise the efficiency of the transmission through the bottom plate. This work deals with the efficiency of the transmission, which directly affects the cleaning performance. The transmission characteristics of the ultrasonic wave in the megasonic cleaner have been obtained analytically and numerically for the variations of some parameters, such as the thickness and inclined angle of the bottom plate of the inner container and the chemical ratio and temperature of the cleaning liquid. The calculated results have yielded the optimum cleaning condition in terms of the sound power transmitted into the cleaning liquid.

  • PDF

The Optimum Cleaning Process of Non-aqueous Alternative Solvents for 1,1,1-TCE (1,1,1-TCE에 대한 비수계성 대체세정제의 최적 세정공정)

  • Jung, Duck-Chae;Lee, Ki-Chang;Kong, Seung-Dae;Mok, Gab-Young;Lee, Seok-Woo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.237-240
    • /
    • 1999
  • This study showed that the optimized cleaning process using non-aqueous cleaning solvents is adaptable in the industrial field for existing 1.1.1-TCE cleaning solvents which is an ozone depleting sustance. Alternative cleaning solvent system substituted for existing cleaning solvent against non-aqueous pollutants(cutting & flux oil), was evaluated for the cleaning efficiency using gravimetric analysis method and surface change of sample by Image analyzer. The results showed that alternative solvents and process had excellent cleaning efficiency.

Optimization of chemical cleaning for reverse osmosis membranes with organic fouling using statistical design tools

  • Park, Ki-Bum;Choi, Changkyoo;Yu, Hye-Weon;Chae, So-Ryong;Kim, In S.
    • Environmental Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.474-484
    • /
    • 2018
  • The cleaning efficiency of reverse osmosis (RO) membranes inevitably fouled by organic foulants depends upon both chemical (type of cleaning agent, concentration of cleaning solution) and physical (cleaning time, flowrate, temperature) parameters. In attempting to determine the optimal procedures for chemical cleaning organic-fouled RO membranes, the design of experiments concept was employed to evaluate key factors and to predict the flux recovery rate (FRR) after chemical cleaning. From experimental results and based on the predicted FRR of cleaning obtained using the Central Composite Design of Minitab 17, a modified regression model equation was established to explain the chemical cleaning efficiency; the resultant regression coefficient ($R^2$) and adjusted $R^2$ were 83.95% and 76.82%, respectively. Then, using the optimized conditions of chemical cleaning derived from the response optimizer tool (cleaning with 0.68 wt% disodium ethylenediaminetetraacetic acid for 20 min at $20^{\circ}C$ with a flowrate of 409 mL/min), a flux recovery of 86.6% was expected. Overall, the results obtained by these experiments confirmed that the equation was adequate for predicting the chemical cleaning efficiency with regards to organic membrane fouling.

A study on cleaning performance of particles on collection plates using an electrodynamic screen (전기역학적 스크린을 이용한 집진판 표면 위 입자 세정성능 연구)

  • Yunhui Joe;Dongho Shin;Younghun Kim;Inyong Park;Sang Bok Kim;Gunhee Lee;Bangwoo Han
    • Particle and aerosol research
    • /
    • v.19 no.3
    • /
    • pp.63-76
    • /
    • 2023
  • An electrostatic precipitator (ESP) has a low pressure drop and a high collection efficiency but its collection efficiency can be reduced due to dust accumulation on the collection plates during long-term operations. In order to maintain the initial dust collection efficiency, it is necessary to periodically clean the collection plates. The common cleaning methods are using physical impacts or water sprays. These cleaning methods can lead to damage to the collection plate or generate wastewater. Herein, we implemented an electrodynamic screen (EDS) for ESP cleaning and evaluated its surface cleaning performance of particles. The EDS is an electrostatic system that can electrostatically repel particles on surfaces, allowing it to clean the ESP without causing damage and wastewater generation. Our evaluation included the analysis of the effects of AC voltage characteristics, electrode configuration and environmental conditions on the cleaning performance of the EDS with the aim of achieving effective surface cleaning. It has been demonstrated that activating the EDS cleans up to 65% of the particles on the surface, which indicates about 94% of our target cleaning zone.

Comparison of particle removal efficiency between the physical cleaning methods in the fabrication of liquid crystal displays (LCD 제조공정에서 물리적 세정법의 미립자 제거효율 비교 연구)

  • Park, Chang-Beom;Yi, Seung-Jun;Chang, In-Soung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.795-801
    • /
    • 2010
  • As the fabrication technology of LCDs (Liquid Crystal Displays) advances, the size of mother glass substrates is getting larger, and the fabrication process is becoming finer. Accordingly, the importance of cleaning processes grows in the fabrication process of LCDs. In this study, we have compared and evaluated the particle removal efficiency for three different methods of physical cleaning, which are brush, bubble jet, and aqua/air cleaning. Using the seventh generation glass substrate, the particle removal efficiency has been investigated by changing operation conditions such as a flow rate of deionized water, pressure, contact depth between a brush bristle and a glass substrate, and so forth. In the case of brush cleaning, the cleaning efficiency barely changes after a critical point when the contact depth is varied. While the cleaning efficiency of bubble jet cleaning is almost independent of pressure, that of aqua/air cleaning is affected by pressure up to a critical point, but is not changed after it. We note the brush cleaning is the most effective among the three cleaning methods under our experimental conditions.