• Title/Summary/Keyword: Cleaning Ball

Search Result 22, Processing Time 0.026 seconds

The Measurements of Ball Recovery Rate for the Cleaning Apparatus in Plate Heat Exchanger Using Ceramic Ball (세라믹 볼을 이용한 판형열교환기 세정장치의 볼 회수율 측정)

  • Chae, Hee-Man;Kwon, Jeong-Tae;Cha, Dong-An;Kwon, Oh-Kyung
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.38-44
    • /
    • 2014
  • The objectives of this study are to measure the ball recovery rate of cleaning apparatus for plate heat exchanger. Ceramic ball is used for plate heat exchanger cleaning. The main components of cleaning apparatus are comprised of ball collector, ball trap, ejector, pump and plate heat exchanger. The ball recovery rate are obtained with change in recovery time and velocity of water. The results show that the ball recovery rate is slightly increased with increase in the recovery time and the velocity of water over 0.4 m/s in the straight flow. In the case of reverse flow, the ball recovery rate more increased than straight flow. The maximum ball recovery rate of the straight flow and reverse flow reach 83.97% and 86.61%, respectively, when the velocity and cleaning time are 0.5 m/s and 15min.

Reduction of energy demand for UF cross-flow membranes in MBR by sponge ball cleaning

  • Issa, Mohammad;Geissen, Sven-Uwe;Vogelpohl, Alfons
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.65-73
    • /
    • 2021
  • Sponge ball cleaning can generate an abrasion effect, which leads to an attractive increasing in both permeate flux and membrane rejection. The aim of this study was to investigate the influence of the daily sponge ball cleaning (SBC) on the performance of different UF cross-flow membrane modules integrated with a bioreactor. Two 1"-membrane modules and one 1/2"-membrane module were tested. The parameters measured and controlled are temperature, pH, viscosity, particle size, dissolved organic carbon (DOC), total suspended solids (TSS), and permeate flux. The permeate flux could be improved by 60%, for some modules, after 11 days of daily sponge ball cleaning at a transmembrane pressure of 350 kPa and a flow velocity of 4 m/s. Rejection values of all tested modules were improved by 10%. The highest permeate flux of 195 L/㎡.h was achieved using a 1"-membrane module with the aid of its negatively charged membrane material and the daily sponge ball cleaning. In addition, the enhancement in the permeate flux caused by daily sponge ball cleaning improved the energy specific demand for all tested modules. The negatively charged membrane showed the lowest energy specific demand of 1.31 kWh/㎥ in combination with the highest flux, which is a very competitive result.

Development on Cleaning System of Condenser for Nuclear Power Plant by Using Sponge Ball (스펀지 볼을 이용한 원전용 복수기 튜브 세정 시스템 개발)

  • Yi, Chung-Seob;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.21-26
    • /
    • 2015
  • This study presents a development of the cleaning system in a nuclear power plant condenser. The tube cleaning system is very important equipment in a power plant condenser. Specially, removal of the fouling is a key process in the condenser tube. The objective of this study is development of a ball collector system for cleaning a condenser by using a sponge ball. This study uses CFD in order to optimize design of the ball strainer screen. Through the CFD, the implication of the ball strainer screen for static pressure distribution is examined. Results of research, this study have developed a 1/5 scale model for application to the power plant and developed a performance test equipment.

Improvement of Solder Joint Strength in SAC 305 Solder Ball to ENIG Substrate Using LF Hydrogen Radical Treatment (SAC 305솔더와 ENIG 기판의 접합강도에 미치는 저주파 수소라디칼처리의 영향)

  • Lee, Ah-Reum;Jo, Seung-Jae;Park, Jai-Hyun;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.29 no.1
    • /
    • pp.99-106
    • /
    • 2011
  • Joint strength between a solder ball and a pad on a substrate is one of the major factors which have effects on electronic device reliability. The effort to improve solder joint strength via surface cleaning, heat treatment and solder composition change have been in progress. This paper will discuss the method of solder ball joint strength improvement using LF hydrogen radical cleaning treatment and focus on the effects of surface treatment condition on the solder ball shear strength and interfacial reactions. In the joint without radical cleaning, voids were observed at the interface. However, the specimens cleaned by hydrogen-radical didn't have voids at the interface regardless of cleaning time. The shear strength between the solder ball and the pad was increased over 120%(about 800gf) when compared to that without the radical treatment (680gf) under the same reflow condition. Especially, at the specimen treated for 5minutes, ball shear strength was considerably increased over 150%(1150gf). Through the observation of fracture surface and cross-section microstructure, the increase of joint strength resulted from the change of fracture mode, that is, from the solder ball fracture to IMC/Ni(P) interfacial fracture. The other cases like radical treated specimen for 1, 3, 7, 9min. showed IMC/solder interfacial fracture rather than fracture in the solder ball.

Design of a Cleaning Robot with Omni-directional Mobility (전방향 이동이 가능한 청소로봇의 구동장치)

  • Jin, Taeseok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.899-901
    • /
    • 2014
  • This paper presents design of a cleaning robot with an omni-directional mobility. The cleaning robot driven with three wheels has been developed and Those omni-wheels enable the robot to move in any directions so that lateral movement is possible. Three wheels mechanism using ball-type tire has been developed to realize a holonomic omni-diredctional robot.

  • PDF

Numerical Analysis of Ball Strainer Screen Module Blockage Effects (볼 여과기 스크린 모듈의 단면 폐쇄효과에 관한 수치해석적 연구)

  • Jeong, Gyung-Cheol;Lee, Hae-Soo;Lee, Chi-Woo
    • Journal of Power System Engineering
    • /
    • v.19 no.1
    • /
    • pp.83-89
    • /
    • 2015
  • A ball strainer screen module, which is used for a condenser tube cleaning system, is a critical mechanical component for maintaining condenser cleanliness. Despite of this importance, not many research have been focused on this module because of its relatively low usage. Employing CFD, this study examines the implication of fluid velocity change and blockage ratio on the ball strainer screen velocity and the static pressure distribution. Through this study, the impact of blockage in the space between ball strainer screen modules is verified. Also, it is found that the ranges of non-dimensional velocity distribution and static pressure distribution decrease as blockage ratio becomes smaller.

Analysis of Cleaning Sponge Ball Recovery Performance According to Vortex Promoter Design Parameters in CTCS for Power Plant (발전소용 CTCS 내 Vortex Promoter 설계 변수에 따른 세척용 스폰지 볼 회수성능 분석)

  • Dawoon Jung;Seungyul Lee;Dongsun Kim;Hyunkyu Suh
    • Journal of ILASS-Korea
    • /
    • v.28 no.3
    • /
    • pp.126-133
    • /
    • 2023
  • This study analyzes the flow characteristics and sponge ball recovery performance in a ball strainer according to vortex promoter design variables through flow-particle analysis based on actual experiments to derive a method for improving the recovery rate of cleaning sponge balls of CTCS applied to existing power plants. Based on the ball strainer in CTCS used in the power plant, the experiment was conducted by changing the design factor of the improved shape. In addition, flow and particle analysis were performed under the same conditions as the experiment to numerically the flow characteristics and recovery rate in the ball strainer according to the design factor of the vortex promoter. As a result of the study, it was confirmed that the recovery performance was improved by about 3% by changing the design height of the Vortex promoter. And when comparing the difference between maximum and minimum recovery rate, it was found that the effect on the recovery performance increased slightly according to the distance condition compared to the vortex promoter design height condition.

The Effect on Fouling Reduction by the Ball Cleaning System in a Compressed Type Refrigerator

  • Lee, Yoon-Pyo;Karng, Sarng-Woo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.10 no.2
    • /
    • pp.88-96
    • /
    • 2002
  • The present study was conducted to estimate the effect on fouling reduction in tubes of the condenser. It shows in detail how to calculate the fouling factor from the experimental results of refrigeration systems with or without the automatic cleaning system using sponge balls and to predict the variation of the factor with time. It also represents how to calculate the temperature and pressure decrease of the refrigerant vapor in the condenser and the load decrease of the compressor in the refrigeration system by fouling reduction.

An Experimental Study of Operating Characteristics on Fouling Auto Removal Apparatus of Multi Pass Type Heat Exchanger using Ejector (이젝터를 이용한 다관식 열교환기 파울링 자동제거장치의 구동특성에 관한 실험적 연구)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.13 no.6
    • /
    • pp.63-69
    • /
    • 2009
  • The experiment was performed to check operating characteristics of fouling auto removal apparatus for multi pass type heat exchanger using ejector. The results showed as following. The ejector suction flow rate increased with the head of operating pump of ejector. Proper suction flow rate showed $7.2{\sim}10.2m^3/h$ for ball collection in case of pump head 35~50m. The head of ejector outlet pipe is below 4.1m in case of 40m, the head of operating pump of ejector to confirm ejector suction flow rate 8.4m3/h. Lattice space of ball separator is allowed 6~10.3mm in ranges of ball diameter are 15~25mm and when mass flow of cooling water is 3.0m/sec. Average of passing time of balls is 1.2~2.8sec depend on the velocity of flow and the size of balls.

  • PDF

The Numerical Analysis of Fluid Flow in the Tube Cleaning System (튜브 클리닝 시스템 내부의 유동 특성에 관한 수치해석적 연구)

  • Jung, Kyung-Chul;Lee, Chi-Woo
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 2014
  • The numerical analysis of fluid flow in the tube cleaning system is examined. The working flow used in this study is seawater, and the temperature change is not considered as the temperature change of seawater in the tube cleaning system is negligible. Also, the analysis is performed under the assumption of steady state. The screens of complicated morphologies are simplified for the analysis, and only one fourth of the tube cleaning system is modeled as the system has a symmetrical shape. The velocity inlet boundary condition is employed for the seawater inlet, whereas the outflow boundary condition is employed for two seawater outlets. In applying the outflow boundary condition for the system with more than two outlets, the flow rate can be arbitrarily assigned. In the analysis, the finite-volume method based numerical analysis tool, the pressure based solver, the standard k-$\varepsilon$ model are utilized, and the under relaxation factor is modified appropriately. From the analysis, the distribution of velocity vectors, pressure and path lines are obtained, and the physical characteristics of fluid flow in the tube cleaning system is well-examined.