• Title/Summary/Keyword: Clean water supply

Search Result 94, Processing Time 0.031 seconds

Development of Chemical Cleaning Agents for Cleaning Indoor Water Supply Pipes (옥내급수관 세척용 화학세정제 개발 연구)

  • Lee, Jae-Hoon;Jung, Jae-Yong;Park, Yong-Bae;Bae, Jae-Heum;Woo, Dal-Sik;Sin, Hyun-Duk
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.162-171
    • /
    • 2010
  • The objective of this study is to develop cleaning agents for the indoor water supply pipe which is environmentally friendly and suitable for removing scale by using various organic acids, inorganic acids, and some additives. Among various organic acids, oxalic acid, citric acid, and malic acid showed good cleaning efficiency of iron oxides which were main components of the indoor water supply pipe scale. Several cleaning agents were formulated by adding chemical additives into these organic acids and evaluated for removal of iron oxides. In this study, it was found that nonionic surfactants were excellent for the removal of iron oxide scale among various additives. Two types of cleaning agents($F_1$, $F_2$) with comparatively high solvent power for iron oxides were formulated in this study. The cleaning agents $F_1$ made by organic acids and some additives were formulated to be safe and environmentally friendly, but seemed to have disadvantage due to their comparatively low cleaning efficiency of iron oxide than $F_2$. But, the cleaning agents $F_2$ prepared by adding inorganic acid a little to $F_1$ showed comparatively good cleaning efficiency of iron oxide and could be recommended for removing hard scale of iron oxides in the indoor water supply pipe. Thus, it is considered that the formulated cleaning agents should be selected based on the extent of scale in the indoor water supply pipe.

Rainwater Harvesting Potential in a New Residential Area in North Bujumbura, Burundi

  • Kheria, Mfuranzima;Kang, Daeseok;Sung, Kijune
    • Journal of Environmental Science International
    • /
    • v.25 no.3
    • /
    • pp.447-456
    • /
    • 2016
  • Access to clean and affordable water is one of the fundamental human rights because water is essential to life and a foundation for socioeconomic development of any country in the world. Despite the efforts to secure water supply in Burundi, the amount of water supplied by public utilities does not meet the demand of the population because population keeps increasing with fluctuation of weather conditions. This study selected north Bujumbura that is a sprawling new residential area in the western part of Burundi as a case to investigate the potential of rainwater harvesting in meeting water demand of the country. Based on a long-term average monthly precipitation in the region, the rainwater harvesting potential was assessed as a function of roof sizes, number of households, and runoff coefficients of roof materials. For the entire region of north Bujumbura, the current water supply capacity of the local water company combined with the rainwater harvesting potential resulted in the water surplus of $468,604.1m^3/yr$. Although three communes among them still showed water deficit in dry season, they still got help from rainwater to relieve their water shortage. This suggests that at the regional scale, proper storages and water quality control for harvestable rainwater could contribute to relieving the regional water shortage and allow the population growth.

Water Demand and Supply Stability Analysis Using Shared Vision Model (Shared Vision 모형을 이용한 용수수급의 안정성 분석)

  • Jeong, Sang-Man;Lee, Joo-Heon;Ahn, Joong-Kun
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.7
    • /
    • pp.569-579
    • /
    • 2004
  • Recently, the extreme drought is often occurred due to the global warming and the serious weather changes. Also, the problems of the water pollution In the developed areas, the oppositions from people in the upper stream area and water concession from the local governments affect the national request to get more clean water resources in upper stream of the undeveloped areas. It also brings on the necessity of recognition for water supply managements. Therefore, as the water demand is rapidly changes in the metropolitan areas, the capability of water supply from the north Han river basin dams should be appropriately investigated. In this study, we developed a simulation system using STELLA (equation omitted) software environment, a shared vision model, to analyze the possibility of the stable water supply from north Han river basin dams. Also, three different rules are applied on this model by dividing the water level to minimum(Rule 1), medium(Rule 2) and maximum(Rule 3). Using the rules, the safety yield changes are analyzed for dam rule curve of the reservoir and hydropower release.

Development of Integrated Water Operation System through Engineering Standardization (표준화를 통한 통합형 수(水)운영시스템의 개발)

  • Han, Geung-Jeon;Kim, Jin-Mun;Jeon, Hwa-Sung;Lee, Kyung-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.602-609
    • /
    • 2011
  • In this paper, we standardized the water operation system picture, process control logic, realtime database and system configuration. All aspects, including monitoring & controlling processes, symbols such as pumps, valves and pipes were standardized. As a result we have developed a specialized Integrated water operation system, iWater. We have developed a variety of advanced application programs that are essential for water treatment systems, such as IWS (Integrated Warning system), MBO(modbus opc)/LSE(LS ethernet) driver, video monitoring, self diagnosis system, network monitoring, etc. IWS prevents water supply accidents by using a variety of alarms and warning messages. Drivers have the flexibility to communicate with other 3rd party systems. We expect that iWater will eliminate any concerns regarding water-related issues while also promoting the production and fair distribution of clean water.

Factors Affecting Household Water Use during the COVID-19 Period: A Focus on the 33 Autonomous Districts of Seoul and Incheon (COVID-19 시기 가정용 상수도 사용에 영향을 미치는 요인에 관한 연구: 서울과 인천의 자치구 33개를 대상으로)

  • Song, Yiseul;Jo, Hanghun;Kim, Heungsoon
    • Land and Housing Review
    • /
    • v.13 no.4
    • /
    • pp.1-12
    • /
    • 2022
  • Clean water is an essential urban infrastructure in human daily life, and water plays a vital role in public health. Due to restrictions on outdoor activities during COVID-19, time staying at home has increased. Therefore, it is plausible to assume that large-scale disaster incidences such as COVID-19 will affect water consumption. In this regard, this research aims to explore the factors that influence household water use during COVID-19. The analysis period of the study is 2020, and the geographical scope covers Seoul and Incheon. A dependent variable was water consumption in the autonomous districts of Seoul and Incheon, and the factors reflecting urban characteristics were used as independent variables. Multiple regression was used for analysis, and the unit of analysis was the autonomous district in Seoul and Incheon. The finding confirmed that the pandemic situation caused an increase in water consumption. In addition, it supports policy for the elderly so that they can use water without financial difficulty. It implies that a stable supply of clean water is essential for managing infectious diseases. The findings of this study are expected to provide some implications for efficient water supply policies and efficient water supply management in the event of the spread of infectious diseases such as COVID-19.

Cycle Simulation on OTEC System using the Condenser Effluent from Nuclear Power Plant (원자력발전소 온배수를 이용한 해양 온도차발전 사이클 해석)

  • Kim, Nam-Jin;Jeon, Young-Han;Kim, Chong-Bo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.37-44
    • /
    • 2007
  • For the past few years, the concern for clean energy has been greatly increased. Ocean Thermal Energy Conversion(OTEC) power plants are studied as a viable option for the supply of clean energy. In this paper, the thermodynamic performance of OTEC cycle was examined. Computer simulation programs were developed under the same condition and various working fluids for closed Rankine cycle, regeneration cycle, Kalina cycle, open cycle and hybrid cycle. The results show that the regeneration cycle using R125 showed a 0.17 to 1.56% increase in energy efficiency, and simple Rankine cycle can generate electricity when the difference in warm and cold sea water inlet temperatures are greater than $15^{\circ}C$. Also, the cycle efficiency of OTEC power plant using the condenser effluent from nuclear power plant instead of the surface water increased about 2%.

Culture Methods for the Production of Clean Soybean Sprouts - I. Effect on Growth of Soybean Sprouts under the Temperature Control of Culture and Water Supply (청정콩나물 재배기술 - I. 재배온도 및 수온이 콩나물 생육에 미치는 영향)

  • Kim Sun-Lim;Hwang Jong-Jin;Son Young-Koo;Song Jin;Park Keum-Yong;Choi Kwang-Soo
    • 물만먹고자라요
    • /
    • no.10
    • /
    • pp.18-24
    • /
    • 2000
  • Six soybean varieties including recommended variety, local and imported soybean Variety were investigated the effect on the growth of soybean sprouts under the various temperatures of culture and water supply, and to develop the culture methods for the pr

  • PDF

The method of securing water supply resources of existing dam by using Blue dam (Blue dam을 활용한 기존 댐 시설물 상수도 원수 추가 확보 방안)

  • Choo, Tai-Ho;Yoon, Hyeon-Cheol;Yun, Gwan-Seon;Kwon, Yong-Been;Shim, Su-Yong;Chae, Soo-Kwon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.2
    • /
    • pp.243-249
    • /
    • 2015
  • To improve stability of the water resources that were seriously affected by climate change and various environmental effects and to supply the clean water always, continuous efforts are essential. Provision of measures with respect of hardware is basically essential to improve the water resources stability due to the topographic characteristic in Korea. However, building a new dam becomes gradually very difficult because of a hardship in selecting right places, opposition forces such as environment and local residents, negative publicity for large civil engineering projects, and so on. The present study, therefore, proposes the Blue dam as an alternative for securing the water resources of a new concept considering domestic conditions. To evaluate the effect of the Blue dam, the Hec-ResSim model is used and the probabilistic discharge flow rate is applied. As a result, when Dam Yeongcheon is applied as a study area, securing water resources of 14 million tons are predicted be secured and the flood control of 15.4 million tons is expected, in comparison with operation of the existing dam only. Consequently, Blue dams are supposed to carry out the function of securing water resources, controling flood, maintaining eco-environmental instream flow, generating hydroelectric power, and providing spaces for recreational activities.