• Title/Summary/Keyword: Clean fuel

Search Result 559, Processing Time 0.027 seconds

Development of Treatment Process for Residual Coal from Biosolubilization

  • Rifella, Archi;Shaur, Ahmad;Chun, Dong Hyuk;Kim, Sangdo;Rhim, Young Joon;Yoo, Jiho;Choi, Hokyung;Lim, Jeonghwan;Lee, Sihyun;Rhee, Youngwoo
    • Clean Technology
    • /
    • v.24 no.2
    • /
    • pp.119-126
    • /
    • 2018
  • This study introduced a treatment process that was developed to treat Indonesian low-rank coal with high-ash content, which has the same characteristics as residual coal from the biosolubilization process. The treatment process includes separation of ash, solid-liquid separation, pelletizing, and drying. To reduce the ash content, flotation was performed using 4-methyl-2-pentanol (MIBC) as frother, and kerosene, waste oil, and cashew nut shell liquid (CNSL) as collectors. The increasing amount of collector had an effect on combustible coal recovery and ash reduction. After flotation, a filter press, extruder, and an oven drier were used to make a dried coal pellet. Then another coal pellet was made using asphalt as a binder. The compressive strength and friability of the coal pellets were tested and compared.

Comparative Evaluation of Steam Gasification Reactivity of Indonesian Low Rank Coals (인도네시아 저등급 석탄의 스팀 가스화 반응성 비교 평가)

  • KIM, SOOHYUN;VICTOR, PAUL;YOO, JIHO;LEE, SIHYUN;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;CHOI, HOKYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.693-701
    • /
    • 2016
  • Steam gasification of low rank coals is possible at relatively low temperature and low pressure, and thus shows higher efficiency compared to high rank coals. In this study, the gasification reactivity of four different Indonesian low rank coals (Samhwa, Eco, Roto, Kideco-L) was evaluated in $T=700-800^{\circ}C$. The low rank coals containing $53.8{\pm}3.4$ wt% volatile matter in proximate analysis and $71.6{\pm}1.2$ wt% carbon in ultimate analysis showed comparable gasification reactivity. In addition, $K_2CO_3$ catalyst rapidly accelerated the reaction rate at $700^{\circ}C$, and all of the coals were converted over 90% within 1 hour. The XRD analysis showed no significant difference in carbonization between the coals, and the FT-IR spectrum showed similar functional groups except for differences due to moisture and minerals. TGA results in pyrolysis ($N_2$) and $CO_2$ gasification atmosphere showed very similar behavior up to $800^{\circ}C$ regardless of the coal species, which is consistent with the steam gasification results. This confirms that the indirect evaluation of the reactivity can be made by the above instrumental analyses.

Performance Prediction Model of Solid Oxide Fuel Cell Stack Using Deep Neural Network Technique (심층 신경망 기법을 이용한 고체 산화물 연료전지 스택의 성능 예측 모델)

  • LEE, JAEYOON;PINEDA, ISRAEL TORRES;GIAP, VAN-TIEN;LEE, DONGKEUN;KIM, YOUNG SANG;AHN, KOOK YOUNG;LEE, YOUNG DUK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.5
    • /
    • pp.436-443
    • /
    • 2020
  • The performance prediction model of a solid oxide fuel cell stack has been developed using deep neural network technique, one of the machine learning methods. The machine learning has been received much interest in various fields, including energy system mo- deling. Using machine learning technique can save time and cost requried in developing an energy system model being compared to the conventional method, that is a combination of a mathematical modeling and an experimental validation. Results reveal that the mean average percent error, root mean square error, and coefficient of determination (R2) range 1.7515, 0.1342, 0.8597, repectively, in maximum. To improve the predictability of the model, the pre-processing is effective and interpolative machine learning and application is more accurate than the extrapolative cases.

The Stabilization Study of Low-rank Coal by Vapor Adsorption (기상흡착 방법에 의한 저등급 석탄의 안정화 연구)

  • Chun, Dong Hyuk;Park, In Soo;Cho, Wan Taek;Jo, Eun Mi;Kim, Sang Do;Choi, Ho Kyung;Yoo, Jiho;Lim, Jeong Hwan;Rhim, Young Joon;Lee, Sihyun
    • Clean Technology
    • /
    • v.19 no.1
    • /
    • pp.38-43
    • /
    • 2013
  • Vapor adsorption of hydrocarbon has been studied for stabilization after drying low-rank coal. The surface characteristics and the propensity of spontaneous combustion were observed for stabilized coal which was maintained with hydrocarbons as stabilizer at several conditions of residence time and temperature. Surface area of micropores in coal mainly decreased after vapor adsorption. As residence time and temperature of adsorption process increased, the propensity of spontaneous combustion decreased. The type of hydrocarbons did not effect on the propensity of spontaneous combustion. As the analysis results of this work, the amount of hydrocarbon adsorbates required to stabilize dried coal was 0.5 wt% or less of coal, and the stabilizing effect was induced by adsorption of low-molecular-weight hydrocarbons.

Torrefaction Effect on the Grindability Properties of Several Torrefied Biomasses

  • Setyawan, Daru;Yoo, Jiho;Kim, Sangdo;Choi, Hokyung;Rhim, Youngjoon;Lim, Jeonghwan;Lee, Sihyun;Chun, Dong Hyuk
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.547-554
    • /
    • 2018
  • Torrefaction is the promising process of pretreating biomass materials to increase the quality of their energy, especially to upgrade the materials' grindability so that it is suitable for a commercial pulverizer machine. In this study, torrefaction of oak, bamboo, oil palm trunk, and rice husk was carried out under different torrefaction temperatures ($300^{\circ}C$, $330^{\circ}C$, and $350^{\circ}C$) and different torrefaction residence times (30, 45, and 60 minutes). Complete characterization of the torrefied biomass, including proximate analysis, calorific value, thermogravimetric analysis, mass yield, energy yield, and grindability properties (Hardgrove Grindability Index) was carried out. Increasing the torrefaction temperature and residence time significantly improved the calorific value, energy density (by reducing the product mass), and grindability of the product. Furthermore, for commercial purposes, the torrefaction conditions that produced the desired grindability properties of the torrefied product were $330^{\circ}C-30minutes$ and $300^{\circ}-45minutes$, and the latter condition produced a higher energy yield for bamboo, oil palm trunk, and rice husk; however, torrefaction of oak did not achieve the targeted grindability property values.

Experimental Analysis of Propensity for Spontaneous Combustion of Low-Rank Coal Upgraded by Spray Coating with Heavy Oil (중질유 분무 코팅에 의한 저등급 석탄의 고품위화와 자연발화 특성 분석)

  • Chun, Dong Hyuk;Park, In Soo;Kim, Sang Do;Rhim, Young Joon;Choi, Ho Kyung;Yoo, Jiho;Lim, Jeong Hwan;Lee, Si Hyun
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.1-6
    • /
    • 2014
  • Upgrading technology has been studied for efficient utilization of low rank coal. Spray coating of heavy oil was applied on the upgrading process in order to stabilize low rank coal against spontaneous combustion. Low rank coal, which contains more than 30wt% of moisture, was upgraded to high calorific coal and stabilized by spray coating of heavy oil. It was identified that spray coating of heavy oil after drying coal is the optimum procedure of upgrading low rank coal. The experimental results show that more than 2wt% of heavy oil should be adsorbed on the coal in order to stabilize sufficiently for spontaneous combustion.

Characteristics of Binderless Briquettes for Indonesian Low-Rank Coals (인도네시아 저등급석탄의 무결합제 성형 특성)

  • Chun, Dong Hyuk;Rhim, Young Joon;Kim, Sang Do;Yoo, Jiho;Choi, Ho Kyung;Lim, Jeong Hwan;Lee, Sihyun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.2
    • /
    • pp.231-235
    • /
    • 2015
  • The characteristics of binderless briquettes for dried low-rank coal was studied in this work. Two kinds of Indonesian coals were used to briquette after drying them in electric oven. The characteristics of briquettes have been examined by moisture contents, particle size, hydraulic force, and storing period. The optimum moisture contents of briquettes were observed at between 10 wt% and 15 wt%. The strength of coal briquette was stronger as particle size became smaller. The strength of coal briquette was proportional to the hydraulic force under 300 kN, whereas there was little difference among the briquettes made at more than 300 kN of hydraulic force. The strength of briquettes sharply decreased for a week after produced, and then showed the tendency of converging. The results from this work can be a useful guideline of manufacturing and managing upgraded coal briquettes.

Parametric Study on High Power SOEC System (고출력 SOEC 시스템의 매개변수 연구)

  • BUI, TUANANH;KIM, YOUNG SANG;GIAP, VAN-TIEN;LEE, DONG KEUN;AHN, KOOK YOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.470-476
    • /
    • 2021
  • In the near future, with the urgent requirement of environmental protection, hydrogen based energy system is essential. However, at the present time, most of the hydrogen is produced by reforming, which still produces carbon dioxide. This study proposes a high-power electrolytic hydrogen production system based on solid oxide electrolysis cell with no harmful emissions to the environment. Besides that, the parametric study and optimization are also carried to examine the effect of individual parameter and their combination on system efficiency. The result shows that the increase in steam conversion rate and hydrogen molar fraction in incoming stream reduces system efficiency because of the fuel heater power increase. Besides, the higher Faraday efficiency does not always result a higher system efficiency.

Enhancing Flow Uniformity of Gas Separator for Solid Oxide Fuel Cells by Optimizing Dimple Patterns (딤플 패턴 최적화를 통한 고체산화물 연료전지 분리판의 흐름 균일도 향상)

  • QUACH, THAI-QUYEN;LEE, DONG KEUN;AHN, KOOK YOUNG;KIM, YOUNG SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.331-339
    • /
    • 2021
  • This study presents a novel way to enhance uniformity of the gas flow inside the solid oxide fuel cell (SOFC), which is critically important to fuel cell performance, by using dimples. A pattern of dimple, which works as a flow distributor/collector, is designed at the inlet and outlet section of a straight channel gas separator. Size of the dimples and the gap between them were changed to optimize the flow uniformity, and any change in size or gap is considered as one design. The results show that some dimple patterns significantly enhance the uniformity compared to baseline, about 4%, while the others slightly reduce it, about 1%. Besides, the dimple pattern also affects to the pressure drop in the flow channel, however the pressure drop in all cases are negligible (less than 26.4 Pa).