• Title/Summary/Keyword: Clean energy

Search Result 1,458, Processing Time 0.027 seconds

Characterization of depth filter media for gas turbine intake air cleaning

  • Park, Young Ok;Hasolli, Naim;Choi, Ho Kyung;Rhee, Young Woo
    • Particle and aerosol research
    • /
    • v.5 no.4
    • /
    • pp.159-170
    • /
    • 2009
  • A depth filter medium was newly designed in order to achieve high collection of dust and low pressure drop in this work. Multilayer depth filter media consist of an upstream layer of highly porous structure which allows particles to pass through and to follow by one or more downstream layers to hold the particles inside the media. For each filter media, flat sheet and pleated module were made of newly developed depth filter media and filter media of commercial products. Commercial depth filter cartridge for gas turbine air intake cleaning were used as reference for filtration area and pleat geometry of pleated modules. This work attempts to evaluate and compare the newly developed depth filter medium and two commercial filter media in terms of filtration parameters such as air permeability, initial pressure drop, particle retention and pressure drop variation with dust loading. According to the close examination the newly developed depth filter showed better performance compared to the commercial depth filter media.

  • PDF

Flow Analysis around the Multi-beam Robot in a Clean Room (클린룸 내 다관절 로봇 주위의 유동해석)

  • Lee, Suk Young
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.122-127
    • /
    • 2015
  • We carried out three-dimensional flow analysis in a clean room. Flow field in a robot experiment system, induced from the moving robot, is numerically studied in this paper. The effects of moving robot in a clean room are investigated in order to find the section of dust accumulation. Contamination on the bottom produced from the moving robot is predicted from the analysis results from the flow fields. Results show that a large swirl flow is formed around the moving robot. Consequently, the optimal flow condition can be obtained by controlling the fluid velocity through the fixing of inlet or outlet position.

Evaluation of brine reuse on salting of chinese cabbage using electrochemical process (전기화학적 처리에 의한 배추 절임염수 재이용 가능성 평가)

  • Jung, Heesuk;Lee, Eunsil;Han, Seongkuk;Han, Eungsoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.28 no.5
    • /
    • pp.541-548
    • /
    • 2014
  • The pickling brine generated from the salting process of kimchi production is difficult to treat biologically due to very high content of salt. When pickling brine is treated and discharged, it cannot satisfy the criteria for effluent water quality in clean areas, while resources such as the salt to be recycled and the industrial water are wasted. However, sterilization by ozone, UV and photocatalyst is expensive installation costs and operating costs when considering the small kimchi manufacturers. Therefore there is a need to develop economical process. The study was conducted on the sterilization efficiency of the pickling brine using electrochemical processing. The electrochemical treatment of organic matters has advantages over conventional methods such as active carbon absorption process, chemical oxidation, and biological treatment because the response speed is faster and it does not require expensive, harmful oxidizing agents. This study were performed to examine the possibility of electrochemical treatment for the efficient processing of pickling brine and evaluated the performance of residual chlorine for the microbial sterilization.

PEMFC Based Cogeneration System Using Heat Pump (히트펌프를 이용한 PEMFC 기반 열병합 발전 시스템)

  • BUI, TUANANH;KIM, YOUNG SANG;LEE, DONG KEUN;AHN, KOOK YOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.324-330
    • /
    • 2021
  • In recent years, polymer electrolyte membrane fuel cell (PEMFC) based cogeneration system has received more and more attention from energy researchers because beside electricity, the system also meets the residential thermal demand. However, the low-quality heat exited from PEMFC should be increased temperature before direct use or storage. This study proposes a method to utilize the heat exhausted from a 10 kW PEMFC by coupling a heat pump. Two different configuration using heat pump and a reference layout with heater are analyzed in term of thermal and total efficiency. The system coefficient of performance (COP) increases from 0.87 in layout with heaters to 1.26 and 1.29 in configuration with heat pump and cascade heat pump, respectively. Lastly, based on system performance result, another study in economics point of view is proposed.

Partial Oxidation of n-Octane over Rh-Containing Alumina-Supported Catalysts (알루미나에 담지된 Rh 함유 촉매의 n-옥탄 부분산화반응)

  • Lee, Shin-Hwa;Suh, Young-Woong;Suh, Dong-Jin;Park, Tae-Jin;Lee, Kwan-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.1
    • /
    • pp.10-17
    • /
    • 2008
  • This study has been focused on the partial oxidation(POX) of n-octane over Rh-containing catalysts supported on alumina. The catalysts for this reaction were prepared by incipient wetness(IW) and co-gel(CG) methods, followed by the calcination at $900{\circ}C$ or $1,200{\circ}C$. When applied to the POX of n-octane carried out at $600{\circ}C$ with C/O=3 and GHSV=3,450/h, the catalyst prepared by the CG method and calcined at $1,200{\circ}C$ showed the best activity, yielding 42% syngas($H_2$+CO) with the $H_2$/CO ratio of $2{\sim}2.4$. To enhance the activity and stability of catalysts, bimetallic catalysts were synthesized by the CG method. As a result, the performance of Rh-Ni/$Al_2O_3$ catalyst was superior to that of Rh/$Al_2O_3$ catalyst in terms of the catalyst stability, due to the retarding effect on the Rh-to-$Rh_2O_3$ transition by the addition of Ni. This result was confirmed by XRD, TEM, and TPR characterizations.

$SO_2/O_2$ Separation Process with EMIm[$EtSO_4$] in SI Cycle for the Hydrogen Production by Water Splitting (물분해 수소제조를 위한 SI cycle에서의 EMIm[$EtSO_4$]를 이용한 $SO_2/O_2$ 분리공정)

  • Lee, Ki-Yong;Kim, Hong-Gon;Jung, Kwang-Deog;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • $SO_2$ has been absorbed and separated selectively by an ionic liquid from $SO_2/O_2$ mixture decomposed from sulfuric acid during the thermochemical SI cycle for the water splitting. In order to design and operate high pressure $SO_2/O_2$ separation system, the solubility of $SO_2$ in [EMIm]$EtSO_4$ (1-ethyl-3-methylimidazolium ethylsulfate) has been measured by Magnetic Suspension Balance at high pressure and temperature. Based on the measured solubility, a pressurized separation system was set up and operated. 194 L/h of $SO_2$($SO_2:O_2$=0.65:1) has been separated with 99.85% of $O_2$ at the vent of absorption tower, which is 22.7% of the theoretically ideal capacity of the system. This discrepancy results from the reduced contact between the gaseous $SO_2$ and the ionic liquid. Increased $SO_2$ supply, scale-up of the absorption column, and a faster ionic liquid circulation speed were suggested to improve the separation capacity.

An Assessment of Energy Consumption in Steam-Humidification- and Water-Spray-Humidification-Type Outdoor Air Conditioning Systems for Semiconductor Manufacturing Clean Rooms (반도체 클린룸용 증기가습 및 수분무가습 외기공조시스템의 에너지소비량 평가)

  • Kim, Ki-Cheol;Song, Gen-Soo;Kim, Hyung-Tae;Yoo, Kyung-Hoon;Shin, Dae-Kun;Park, Dug-Jun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.2
    • /
    • pp.55-63
    • /
    • 2013
  • For a large-scale semiconductor manufacturing clean room, the energy consumed in an outdoor air conditioning system to heat, humidify, cool and dehumidify incoming outdoor air is very large. In particular, the energy requirement to humidify outdoor air in the winter season is generally known to be high. Recently, in order to overcome the high energy consumption nature of a steam generator in a conventional steam humidification type outdoor air conditioning system, an air washer is often introduced instead of the steam generator in the outdoor air conditioning system, which can be called a water spray humidification type outdoor air conditioning system. Therefore, the assessment and comparison of the annual energy consumed in the steam humidification type and the water spray humidification type outdoor air conditioning systems deserves to be examined in order to reduce the outdoor air conditioning load of a clean room. In the present study, a numerical analysis was conducted to obtain the annual electric power consumption of the two outdoor air conditioning systems. It was shown from the comparison of the numerical results that the water spray humidification type outdoor air conditioning system can reduce about 30% of annual electric power consumption of the steam humidification type outdoor air conditioning system.

Measurement of Sulfur Dioxide Concentration Using Wavelength Modulation Spectroscopy With Optical Multi-Absorption Signals at 7.6 µm Wavelength Region (7.6 µm 파장 영역의 다중 광 흡수 신호 파장 변조 분광법을 이용한 이산화황 농도 측정)

  • Song, Aran;Jeong, Nakwon;Bae, Sungwoo;Hwang, Jungho;Lee, Changyeop;Kim, Daehae
    • Clean Technology
    • /
    • v.26 no.4
    • /
    • pp.293-303
    • /
    • 2020
  • According to the World Health Organization (WHO), air pollution is a typical health hazard, resulting in about 7 million premature deaths each year. Sulfur dioxide (SO2) is one of the major air pollutants, and the combustion process with sulfur-containing fuels generates it. Measuring SO2 generation in large combustion environments in real time and optimizing reduction facilities based on measured values are necessary to reduce the compound's presence. This paper describes the concentration measurement for SO2, a particulate matter precursor, using a wavelength modulation spectroscopy (WMS) of tunable diode laser absorption spectroscopy (TDLAS). This study employed a quantum cascade laser operating at 7.6 ㎛ as a light source. It demonstrated concentration measurement possibility using 64 multi-absorption lines between 7623.7 and 7626.0 nm. The experiments were conducted in a multi-pass cell with a total path length of 28 and 76 m at 1 atm, 296 K. The SO2 concentration was tested in two types: high concentration (1000 to 5000 ppm) and low concentration (10 ppm or less). Additionally, the effect of H2O interference in the atmosphere on the measurement of SO2 was confirmed by N2 purging the laser's path. The detection limit for SO2 was 3 ppm, and results were compared with the electronic chemical sensor and nondispersive infrared (NDIR) sensor.

A Study on Development of Wind Power 400W Generation System with Vertical axis Type (400W 수직형 풍력발전시스템의 개발에 관한 연구)

  • Yoon, Jeong-Phil;Choi, Jang-Kyun;Cha, In-Su
    • New & Renewable Energy
    • /
    • v.2 no.3
    • /
    • pp.23-30
    • /
    • 2006
  • Need developments of substitute energy to solve problem of global warming by excess use of fossil energy, excess discharge of carbon dioxide. wind power generation system is all-important energy in next generation as clean energy. Environmental pollution of wind power generation system is not exhausted entirely. And, electric-power generation system cost is cheap than other energy. Wind Generation system that is supplied much present is most horizontality style blade structure. But, Horizontal style structure is serious noise and there is problem in stability of blade. We designed special blade solve to this problem. And, manufactured vertical axis wind power generation system because using blade. Also, developed assistance power generator to increase driving efficiency ago wind power generation. We expect this devices that is such cover shortcoming of wind power generation system.

  • PDF

Thermal Decomposition of Ammonia Borane for $H_2$ Release (수소 발생을 위한 암모니아 보레인의 열분해)

  • Lee, Ji-Hong;Lee, Hyun-Joo;Ahn, Byoung-Sung;Kim, Chang-Soo
    • Journal of Hydrogen and New Energy
    • /
    • v.19 no.4
    • /
    • pp.299-304
    • /
    • 2008
  • Thermal decomposition of Ammonia Borane have been investigated with various analytical methods including TGA, TP-MS, DSC. By-products such as aminoborane and borazine were identified during hydrogen release by TGA, TP-MS analysis. $H_2$ release amount was measured at each temperature isothermally, which resulted in 7 wt% $H_2$ release at 130$^{\circ}C$. Moreover, higher temperature enhanced hydrogen release kinetics leading to shortened induction period from 20 min at 95$^{\circ}C$ to 0 min at 130$^{\circ}C$. Melting and decomposition at close temperature (4$^{\circ}C$ difference) caused the formation of thin foam during hydrogen release. Suppression of by-products and thin foam formation during hydrogen release is suggested as critical issues to realize chemical hydrogen storage system with ammonia borane.