• Title/Summary/Keyword: Clean Wind-Tunnel

Search Result 10, Processing Time 0.035 seconds

Effect of Ice accretion on the aerodynamic characteristics of wind turbine blades

  • Sundaresan, Aakhash;Arunvinthan, S.;Pasha, A.A.;Pillai, S. Nadaraja
    • Wind and Structures
    • /
    • v.32 no.3
    • /
    • pp.205-217
    • /
    • 2021
  • Cold regions with high air density and wind speed attract wind energy producers across the globe exhibiting its potential for wind exploitation. However, exposure of wind turbine blades to such cold conditions bring about devastating impacts like aerodynamic degradation, production loss and blade failures etc. A series of wind tunnel tests were performed to investigate the effect of icing on the aerodynamic properties of wind turbine blades. A baseline clean wing configuration along with four different ice accretion geometries were considered in this study. Aerodynamic force coefficients were obtained from the surface pressure measurements made over the test model using MPS4264 Simultaneous pressure scanner. 3D printed Ice templates featuring different ice geometries based on Icing Research Tunnel data is utilized. Aerodynamic characteristics of both the clean wing configuration and Ice accreted geometries were analysed over a wide range of angles of attack (α) ranging from 0° to 24° with an increment of 3° for three different Reynolds number in the order of 105. Results show a decrease in aerodynamic characteristics of the iced aerofoil when compared against the baseline clean wing configuration. The key flow field features such as point of separation, reattachment and formation of Laminar Separation Bubble (LSB) for different icing geometries and its influence on the aerodynamic characteristics are addressed. Additionally, attempts were made to understand the influence of Reynolds number on the iced-aerofoil aerodynamics.

An Experimental Study on Aerodynamic Performance of a Rotor-Blade Configuration under Cross-Wind Conditions (측풍 조건을 고려한 로터블레이드 형상의 공력성능에 대한 실험적 연구)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • In the present study, a wind tunnel test for a rotor-blade configuration was conducted to investigate a basic aerodynamic performance and a effect of the cross wind. The diameter of the configuration was 1.46 m and the test was carried out for both a clean and a tripped configurations. The boundary layer for the trip configuration was simulated by zig-zag tape and the test performed on constant-velocity and constant-rotational modes. It was shown that the test result for the tripped configuration reduces the maximum power coefficient by 9.4% ~ 12.1% compared to the clean one. Within $5^{\circ}$ of the flow angle, there is no significant loss of power, however, the coefficient is reduced by 5.3% ~ 36.7% in the range of $10^{\circ}{\sim}30^{\circ}$.

Development of wind power simulator using MATLAB SIMULINK (MATLAB_SIMULINK를 이용한 풍력 발전 시뮬레이터 개발)

  • Park, won-hyeon;Gebreslassie, Mihret;Park, Ji-Hyeon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.665-667
    • /
    • 2016
  • Due to the depletion of fossil fuels and the environmental problems of recent years it has been increasing every year the interest in renewable energy. Renewable energy is clean and the typical method using solar and wind power and solar power as an energy source reusable. Wind power generation system of which it is a method of using the natural wind, convert the kinetic energy of the wind into electrical energy. Traditionally, implementing a wind power system, wind tunnel tests was to configure an environment similar to a real wind tunnel experiments. However, it costs a lot of money problems hagieneun configure these wind tunnel tests. Therefore, by this paper, in consideration of the fact, the characteristics of the generator in the wind tunnel experiment to experiment with such a wind tunnel test using a bad test by configuring the motor and controls the motor generator to obtain a result similar to the wind tunnel experiment.

  • PDF

Experiment on Collection Characteristics of Sub micron Particles in Two-Stage Parallel-Plate Electrostatic Precipitators (2단 평행판 전기집진기의 서브마이크론 입자 포집특성 실험)

  • Oh, M.D.;Yoo, K.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.3
    • /
    • pp.237-246
    • /
    • 1994
  • Experimental data are reported for charging and collection of NaCl aerosols in the 0.03- to $0.2{\mu}m$-geometric-mean-diameter range in 2-stage parallel-plate electrostatic precipitators. The NaCl aerosols are generated with geometric standard deviation of about 1.74 and particle generation rate of about 10^9 particles/see by the constant output atomizer and injected into the air flow in the clean wind-tunnel. The 2-stage parallel-plate electrostatic precipitator installed in the test section of the wind-tunnel is operated with a positive corona discharge. The NaCl aerosols in the channel flow are sampled and transported to the aerosol particle number concentration measurement system by using the isoaxial sampling and transport system constructed based on the Okazaki and Willeke design. The aerosol particle number concentration measurement system measures the size distribution of submicrometer aerosols by an electrical mobility detection technique. It is confirmed from comparing the measured collection efficiencies in this study and the predicted ones by our previous theoretical analysis that the predicted collection efficiencies agree well with the experimental ones. It is also found from the comparison that below about $0.02{\mu}m$ all particles are not charged and the uncharged particles are not collected, and consequently 2-stage parallel-plate electrostatic precipitators are not suitable for that particle size range.

  • PDF

Study on the Aerodynamic Analysis of the High-Speed EMU (동력분산형 고속철도의 공력해석기술 연구)

  • Rho, Joo-Hyun;Ku, Yo-Cheon;Yun, Su-Hwan;Kwak, Min-Ho;Park, Hoon-Il;Kim, Kyu-Hong;Lee, Dong-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1166-1171
    • /
    • 2008
  • Through Korean high speed train development project "G7 Leading Technology Development Project" from 1996 to 2002, HSR-350X has been developed. It can run the maximum operating speed of 350 km/h. Based on this technology, KTX-2 which will be served commercially has been developed till 2007. This paper introduces the aerodynamic analysis of the High-Speed EMU and shows the results of optimized aerodynamic nose shape design techniques and clean pantograph panhead original techniques study. These are the important parts of developments for high speed train which maximum speed is 400 km/h. Especially for decrease of tunnel micro pressure waves, the optimized nose area distributions were derived and the characteristics of micro pressure wave were analyzed. The robust optimized pantograph panhead shapes investigated to improve the performance and decrease the vortex flow which is thought to be its noise source. These shapes are clean and robust to external disturbances like unsteady accelerated flow or side wind was derived. Finally aerodynamic performances was verified with PIV and smog visualization by wind tunnel test.

  • PDF

Array Resolution Improving Methods for Beamforming Algorithm (빔형성방법에서의 분해능 향상 기법에 관한 연구)

  • Hwang, Seon-Gil;Rhee, Wook;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.164-169
    • /
    • 2005
  • Microphone array techniques are being used widely in wind tunnel measurements for identification of the distributed aerodynamic noise sources on the model being tested. Depending on the frequencies and sound levels, conventional beamforming algorithm has limitation in separating two adjacent sources. Several modifications to the classical beamforming have been developed to enhance way resolution and reduce sidelobe levels. In this Paper the robust adaptive beamforming and the CLEAN algorithm are used to compare to the result of conventional beamforming method. It is found that the CLEAN algorithm is capable of pin-pointing locations of multiple sources nearby, while these sources are unidentifiable with robust adaptive or conventional beamforming techniques.

  • PDF

Calibration and Performance Test of Hot-wire Anemometers by Using a Calibration Wind Tunnel (풍동장치를 이용한 열선풍소계의 보정 및 실태 평가)

  • Ha, Hyun-Chul;Kim, Tae-Hyeung;Kim, Eun-A;Kim, Jong-Chul;Oh, Jung-Ryng;Jung, Ho-Keun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.110-122
    • /
    • 1999
  • Hot-wire anemometers are most commonly used in measuring hood capture velocities due to their accuracy and convenience. But it was questionable that the anemometers being used in the field are accurate enough for the purpose of measurements. To answer this ques tion, a calibration wind tunnel was newly devised and tested. Subsequently, 53 hot-wire anemometers being currently used in the field were tested to evaluate the accuracy of anemometers. The average error was 16.93% while the average errors in the low (0.5~5m/s) and high (5~20m/s) velocity range were 17.40% and 16.45%, respectively. Most of anemometers underestimated the true velocities. It might be due to the contamination of hot-wire, resulting in the slow heat transfer between the sensor and air flow. Astonishingly, 16 of 53 anemometers were out of order due to the malfunctioning of zero adjustment control, power supply, display panel and sensor. It is desirable to calibrate periodically and clean the sensor after using in the dirty environment.

  • PDF

A study on the program development for area optimizing of damper ports in road tunnels with transverse ventilation system (횡류식 도로터널의 급, 배기구 포트 개구면적 최적화 프로그램 개발 연구)

  • Jo, Hyeong-Je;Chun, Kyu-Myung;Min, Dea-Kee;Kim, Jong-Won;Beak, Jong-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.177-188
    • /
    • 2019
  • The purpose of the optimization of the installation of supply/exhaust ports for tunnels with transverse ventilation system is to supply fresh air from outside to inside of tunnels uniformly and exhaust pollutant from tunnels properly for creating safe and clean environment for tunnel users. For this purpose, a ventilation port area optimization program was developed to obtain a uniform supply or exhaust air volume inside a great depth double deck tunnel with transverse ventilation system. In order to area optimize the developed port sizing program, the wind velocity was measured in the duct of the currently operated tunnel with semi-transverse ventilation. Also 3D cfd was performed on the same tunnel and cfd results were compared to the measured value. As a result, the error rate between the predicted value from the program and measured value was 6.72%, while the error rate between the predicted value from the program and 3D cfd analysis value was 4.86%. Both of comparison results show less than 10% of error rate. Thus It is expected that supply/exhaust port optimization design of transverse ventilation tunnel can be possible with using this large exhaust port area optimization program.

The Study on the experimental of a development of the filtering system for particle/gas phase contaminants (입자/가스상 오염물질 필터링 장치 개발에 관한 실험적 연구)

  • Kim, Tae-Hyung;Nam, Seung-Baeg;Ha, Jong-Pil;Moon, In-Ho;Cho, In-Soo
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.387-392
    • /
    • 2007
  • In this study performance evaluation of filtering system were made on the clean air supply system to show it's ability to eliminate the air contaminants. The evaluation was conducted inside the 3,200CMH scale wind tunnel and under the same environment that is effected by yellow dust and similar particle and gas phase contaminants in semi-conductor and FPDs industries. (1) The result of experimental for particle contaminants, the particle removing efficiency was 40% on condition that the air velocity is 2.5m/s, L/G ratio : 0.05, electrified voltage : (+)5.8kV with electric charger and (-)3.5kV with eliminator. (2) The gas phase removing efficiency for $NH_3$ : 80%, $SO_X$ : 70% and $NO_X$ : 40% on condition that the air velocity is 2.5m/s, L/G ratio : 0.05.

  • PDF

Application of spatiotemporal transformer model to improve prediction performance of particulate matter concentration (미세먼지 예측 성능 개선을 위한 시공간 트랜스포머 모델의 적용)

  • Kim, Youngkwang;Kim, Bokju;Ahn, SungMahn
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.329-352
    • /
    • 2022
  • It is reported that particulate matter(PM) penetrates the lungs and blood vessels and causes various heart diseases and respiratory diseases such as lung cancer. The subway is a means of transportation used by an average of 10 million people a day, and although it is important to create a clean and comfortable environment, the level of particulate matter pollution is shown to be high. It is because the subways run through an underground tunnel and the particulate matter trapped in the tunnel moves to the underground station due to the train wind. The Ministry of Environment and the Seoul Metropolitan Government are making various efforts to reduce PM concentration by establishing measures to improve air quality at underground stations. The smart air quality management system is a system that manages air quality in advance by collecting air quality data, analyzing and predicting the PM concentration. The prediction model of the PM concentration is an important component of this system. Various studies on time series data prediction are being conducted, but in relation to the PM prediction in subway stations, it is limited to statistical or recurrent neural network-based deep learning model researches. Therefore, in this study, we propose four transformer-based models including spatiotemporal transformers. As a result of performing PM concentration prediction experiments in the waiting rooms of subway stations in Seoul, it was confirmed that the performance of the transformer-based models was superior to that of the existing ARIMA, LSTM, and Seq2Seq models. Among the transformer-based models, the performance of the spatiotemporal transformers was the best. The smart air quality management system operated through data-based prediction becomes more effective and energy efficient as the accuracy of PM prediction improves. The results of this study are expected to contribute to the efficient operation of the smart air quality management system.