• 제목/요약/키워드: Clay water content

검색결과 402건 처리시간 0.034초

Correlating the hydraulic conductivities of GCLs with some properties of bentonites

  • Oren, A. Hakan;Aksoy, Yeliz Yukselen;Onal, Okan;Demirkiran, Havva
    • Geomechanics and Engineering
    • /
    • 제15권5호
    • /
    • pp.1091-1100
    • /
    • 2018
  • In this study, the relationships between hydraulic conductivity of GCLs and physico-chemical properties of bentonites were assessed. In addition to four factory manufactured GCLs, six artificially prepared GCLs (AP-GCLs) were tested. AP-GCLs were prepared in the laboratory without bonding or stitching. A total of 20 hydraulic conductivity tests were conducted using flexible wall permeameters ten of which were permeated with distilled deionized water (DIW) and the rest were permeated with tap water (TW). The hydraulic conductivity of GCLs and AP-GCLs were between $5.2{\times}10^{-10}cm/s$ and $3.0{\times}10^{-9}cm/s$. The hydraulic conductivities of all GCLs to DIW were very similar to that of GCLs to TW. Then, simple regression analyses were conducted between hydraulic conductivity and physicochemical properties of bentonite. The best correlation coefficient was achieved when hydraulic conductivity was related with clay content (R=0.85). Liquid limit and plasticity index were other independent variables that have good correlation coefficients with hydraulic conductivity (R~0.80). The correlation coefficient with swell index is less than other parameters, but still fairly good (R~0.70). In contrast, hydraulic conductivity had poor correlation coefficients with specific surface area (SSA), smectite content and cation exchange capacity (CEC) (i.e., R < 0.5). Furthermore, some post-test properties of bentonite such as final height and final water content were correlated with the hydraulic conductivity as well. The hydraulic conductivity of GCLs had fairly good correlation coefficients with either final height or final water content. However, those of AP-GCLs had poor correlations with these variables on account of fiber free characteristics.

A comparative experimental study on the mechanical properties of cast-in-place and precast concrete-frozen soil interfaces

  • Guo Zheng;Ke Xue;Jian Hu;Mingli Zhang;Desheng Li;Ping Yang;Jun Xie
    • Geomechanics and Engineering
    • /
    • 제36권2호
    • /
    • pp.145-156
    • /
    • 2024
  • The mechanical properties of the concrete-frozen soil interface play a significant role in the stability and service performance of construction projects in cold regions. Current research mainly focuses on the precast concrete-frozen soil interface, with limited consideration for the more realistic cast-in-place concrete-frozen soil interface. The two construction methods result in completely different contact surface morphologies and exhibit significant differences in mechanical properties. Therefore, this study selects silty clay as the research object and conducts direct shear tests on the concrete-frozen soil interface under conditions of initial water content ranging from 12% to 24%, normal stress from 50 kPa to 300 kPa, and freezing temperature of -3℃. The results indicate that (1) both interface shear stress-displacement curves can be divided into three stages: rapid growth of shear stress, softening of shear stress after peak, and residual stability; (2) the peak strength of both interfaces increases initially and then decreases with an increase in water content, while residual strength is relatively less affected by water content; (3) peak strength and residual strength are linearly positively correlated with normal stress, and the strength of ice bonding is less affected by normal stress; (4) the mechanical properties of the cast-in-place concrete-frozen soil interface are significantly better than those of the precast concrete-frozen soil interface. However, when the water content is high, the former's mechanical performance deteriorates much more than the latter, leading to severe strength loss. Therefore, in practical engineering, cast-in-place concrete construction is preferred in cases of higher negative temperatures and lower water content, while precast concrete construction is considered in cases of lower negative temperatures and higher water content. This study provides reference for the construction of frozen soil-structure interface in cold regions and basic data support for improving the stability and service performance of cold region engineering.

Starch-Fatty Complex Modified Filler for Papermaking

  • Yoon, Se-Young;Deng, Yulin
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2006년도 PAN PACIFIC CONFERENCE vol.1
    • /
    • pp.79-84
    • /
    • 2006
  • In order to improve filler-fiber bonding in paper, starch-filler composites were prepared by a starch-fatty acid complex formation method. These composites were used as a papermaking filler to improve the physical properties of the paper, filler retention and the sizing effect. The solubility of the starch-fatty acid complex in water at different temperatures was measured. The results indicated that the starch-fatty acid complexes have very low solubility in water below $70^{\circ}C$, which can be easily coated on clay surface to modify clay-fiber bonding ability. The clay-starch composite filled handsheets showed that paper strength could increase more than $100{\sim}200%$ compared to untreated clay. It was found that ZDT of the handsheet decreased as the clay content increased when unmodified clay was used, but it increased when the starch-fatty acid composite modified filler was used. It was also found that the presence of fatty acide in the complex increased the water-repellant property of the handsheet, which can be used to aid in sizing during papermaking. Filler distribution and bonding characteristics between the composite and fiber were investigated using Scanning Electron Microscopy(SEM).

  • PDF

해성점토를 이용한 시멘트 혼합토의 배합조건 및 재령일별 강도 예측 (Strength Prediction of Mixing Condition and Curing Time Using Cement-Admixed Marine Clay)

  • 전제성;박민철;이송
    • 한국지반공학회논문집
    • /
    • 제29권12호
    • /
    • pp.45-56
    • /
    • 2013
  • 기존 연구를 통해 혼합토 강도예측에 있어 Abrams 방정식이 효과적으로 적용될 수 있으며 점토 함수비와 시멘트 함유율의 비는 강도를 결정짓는 가장 주요한 인자임이 제시되었다. 본 연구에서는 혼합토 실내시험을 통해 점토 함수비-시멘트 함유율 및 재령일에 대한 일축압축강도 변화를 분석하였으며, 회귀분석을 통해 각 배합조건별 Abrams 방정식 상의 계수값 변화 및 재령일에 대한 예측식을 제안하였다. 특정 상수값으로 고려되었던 B 계수는 재령일에 따라 변화하는 값으로서, 최종적인 혼합토 강도에 미치는 영향을 분석한 결과 재령일에 따른 변수형태의 고려가 적정한 것으로 나타났다. Abrams 방정식을 통해 $w_c/C$, 재령일을 변수로한 일축압축강도의 조건별 상호 관계식을 구성하였으며, 각 계수별 회귀분석 결과는 특정 배합조건에서의 혼합토 강도값을 이용한 임의 조건에서의 강도예측에 적용될 수 있었다.

단층핵의 물리적 특성과 마찰 특성의 상관관계 분석 (Physical Properties and Friction Characteristics of Fault Cores in South Korea)

  • 문성우;윤현석;서용석
    • 자원환경지질
    • /
    • 제53권1호
    • /
    • pp.71-85
    • /
    • 2020
  • 본 연구에서는 지반공학 및 지질공학적 측면에서 단층핵의 거동을 이해하기 위해 화강암, 퇴적암 및 화산암 단층대에서 채취된 단층핵 시료를 대상으로 물리적 특성(각력 및 점토함량, 단위중량, 공극률, 함수비)과 마찰 특성(내부마찰각, 점착력)의 관계를 분석하였다. 실내시험으로부터 산정된 물리적 특성을 분석한 결과, 단층핵 내 각력은 단위중량과 양(+)의 상관관계를 가지고, 점토함량, 공극률 및 함수비와는 음(-)의 상관관계를 가진다. 직접전단시험으로부터 산정된 내부 마찰각과 점착력에 대한 사분위수 범위(IQR)는 각각 16.7-38.1°, 2.5-25.3 kPa로 나타났다. 또한, 단층핵의 마찰특성에 미치는 물리적 특성의 영향을 분석한 결과, 마찰각은 모든 암종에서 각각 각력함량 및 단위중량과 양(+)의 상관관계를 가지고, 점토함량, 공극률 및 함수비와 음(-)의 상관관계를 보인다. 대조적으로, 단층핵의 점착력은 각력함량 및 단위중량과 음(-)의 상관관계를 가지고, 점토함량, 공극률 및 함수비와 양(+)의 상관관계를 보인다.

연약점토의 함수비 변화가 고화처리토의 강도에 미치는 영향 (Effect of Water Content Change of Soft Clay on Strength of Solidification Agent Treated Soil)

  • 김광빈;이용안;이광준;김유성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.553-560
    • /
    • 2002
  • The improvement effect of soft ground is estimated by unconfined strength mainly. The unconfined strength of solidification agent treated soil is likely to vary with ununiformed mixing ratio and water content change of in-situ ground place by place. So, it is unreasonable to apply a solidification agent mixing ratio obtained from laboratory test results on all over the soft ground. In this study, it was analysed how the unconfined strength would be effected by the water content of soft ground. For this study, a series of unconfined compressive tests are peformed on various water content soil samples. The test results showed that the strength was fallen to 30∼80% by two times increase of water content approximately, This means that strength of solidification agent treated soil is influenced greatly by water content of raw soft ground and mixing ratio of solidification agent. It was suggested that the method how to decide the mixing ratio with soft ground water content.

  • PDF

Micro-Fiber의 혼합에 의한 해성준설점토의 보강에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE REINFORCING EFFECT 01 MARINE DREDGING CLAY MIXED WITH MICRO-FIBER)

  • 박영목;허상목
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.143-155
    • /
    • 1999
  • An experimental study has been carried out to investigate the reinforcing effect of marine dredging clay(MDC) mixed with the Micro-Fiber(MF). A series of laboratory tests was performed using specimens of MDC alone and MDC with MF by means of uniaxial and triaxial compression test. In the test programme, three stages of water content of MDC were chosen according to the elapsed time after dredging, and content and length of MF were considered as important factors for reinforcing effect. And the developed strength due to curing was measured both in MDC and composite. The enhancement of strength of composite was found to be increased with the increasing content and length of MF, and curing time, and with decreasing water content of MDC. An additional study has been made for in-situ trafficability on the soft reclaimed ground by MDC due to high water content. It was found that the waste lime was to be applicable for this purpose to get a reinforcing effect of MDC. A further study would lead to the better understanding of the reinforcing mechanism of the composite.

  • PDF

단위셀 시험을 이용한 SCP 공법 적용지반 점성토의 개량특성 (The Characteristics of the Improvement of the Clayey soil in the Composite Ground with Sand Compaction Pile(SCP) using Unit-cell test)

  • 이동현;신현영;한상재;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 춘계 학술발표회 논문집
    • /
    • pp.982-989
    • /
    • 2005
  • In this study, a series of laboratory tests based on 'Unit-cell concept' are performed to investigate improvement characteristics of clay ground in sand compaction pile method. Settlement reduction characteristics of composite ground and improvement characteristics of clay part could be qualified. In these procedure, the new strain-compression index($C_{\epsilon}$) of composite ground are adopted to show compressibility of composite ground according to the area replacement ratio, which is similar to the compression index($C_c$) in pure clay ground. Also, using normalization of reduction of water content in composite ground to the initial water content, improvement characteristics of clay part are investigated.

  • PDF

황토의 일반적 특성 및 산화철 함량 (General Properties and Ferric Oxide Content of Hwangtoh(Yellow Ochre))

  • 김인규;서성훈;강진양
    • Journal of Pharmaceutical Investigation
    • /
    • 제30권3호
    • /
    • pp.219-222
    • /
    • 2000
  • The purpose of this research was to investigate the general properties and main ingridients of Hwangtoh, which is the Korean loess. It is well known as a raw material of pottery shown to be widely scattered on the earth, especially in Korea. It belongs to primary clay that was found to be rich on mountain surface or field. In this study, XRF Spectral method was employed to analyze the chief ingredients of Hwangtoh, being found to consist of $43{\sim}50%\;SiO_2,\;2{\sim}34%\;Al_2O_3,\;2{\sim}3%\;Mg,\;2{\sim}3%\;Na\;and\;1{\sim}2%\;K$. The ferric oxide contents of Hwangtoh from San Chung, Ha Dong, Ko Ryung, Ouk Chong, Bang Gae and Song Kwang were 6.46, 7.96, 11.26, 9.36, 9.06 and 9.28 %, respectively. The general characteristics of Hwangtoh from different places were studied by determining the content of water and the capacity to maintain temperature. Based on the above results, Hwangtoh could be said to have better quality than primary clay of Kaolin dose, and also would be able to find an application in construction formulations.

  • PDF

초연약 준설토의 증발 및 건조특성 분석 (Evaporation and Desiccation of Soft Dredged Clay)

  • 정하익;오인규;지성현;이승원;이영남;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.217-222
    • /
    • 2000
  • An understanding of the behaviour of soft clay soils is important in a large number of civil engineering applications, including dredging operations, land reclamation and slurry management such as disposal and storage. Although the details of the behaviour depend on parameters such as the soil mineralogy, the pore water chemistry, the organic content and the microbiology, there are general features that are typical in many cases. The purpose of this paper is to present and discuss some of evaporation and desiccation observed in laboratory experiments under controlled conditions. Desiccation of dredged material is basically removal of water by evaporation which is controlled by weather and material type, etc. This study shows that (1) solar radiation, (2) wind velocity, (3) material depth, (4) trench depth are important factors in desiccation of dredged ultra soft clay.

  • PDF