• Title/Summary/Keyword: Clay soil improvements

Search Result 12, Processing Time 0.028 seconds

The Reality and Problem of Soft Ground Improvement Construction (연약지반 개량 시공의 실제와 문제점)

  • Choi, Gwi-Bong;Hwang, Soung-Won;Kim, Jong-Ryeol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.672-679
    • /
    • 2008
  • During recent years, the large soft ground improvements very rapidly increase with industrial development and it is the types and scales of structure that is enlarged by degree. Then, we must enter construct equipment to improve soft ground and we fulfilled works by carrying out soft clay soil to gain trafficability for them. For improving the soft ground, we lay geotextile on soft clay ground and fill the filter sand that can drain the pore water. Then, we landfill cover soil for come by trafficability of construction tools. Ater that we penetrate vertical drain for dehydration through soft ground. there are very complicated works. For these reason we suggest the methods of soft ground improvement constructions.

  • PDF

Evaluation of Indoor Air Improvement of Matrix Using Activated clay as Adsorption Material (활성백토를 흡착재로 활용한 경화체의 실내 공기 개선 평가)

  • Jeong, Hyun-Su;Kim, Yeon-Ho;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.189-190
    • /
    • 2020
  • The importance of indoor air quality management has recently been highlighted due to environmental problems such as indoor air pollution. Among indoor air pollutants, carbon dioxide occurs in cooking, heating, burning, and causes forgetfulness, dementia and amnesia. Radon, which occurs in building materials, soil and ground, is a type 1 carcinogen that causes lung cancer in the body through breathing. These substances can be released from the room through ventilation, but there is a limit to reducing the amount of indoor activity due to reduced ventilation conditions due to increased indoor activity time. However, these substances can be removed from the gas by adsorption. The purpose of this study was to identify the properties of granular active and powdered active white soil and mix them to make cement-based active white soil adsorbent matrix for carbon dioxide, fine dust and radon gas adsorption, and to evaluate indoor air improvements according to the mixing scale. The results of the experiment showed that active carbon dioxide adsorption performance increased for carbon dioxide and radon as the exchange rate increased through physical adsorption. In particular, the higher the replacement rate of the granular active bag, the better adsorption performance was shown.

  • PDF

Soil water characteristic curve and improvement in lime treated expansive soil

  • Al-Mahbashi, Ahmed M.;Elkady, Tamer Y.;Alrefeai, Talal O.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.687-706
    • /
    • 2015
  • Methods commonly used to evaluate the improvement of lime-treated expansive soil include swelling characteristics and unconfined compressive strength. In the field, lime-treated expansive soils are in compacted unsaturated state. Soil water characteristic curves (SWCCs) represent a key parameter to interpret and describe the behavior of unsaturated expansive soil. This paper investigates the use of SWCC as a technique to evaluate improvements acquired by expansive soil after lime treatment. Three different lime contents were considered 2%, 4% and 6% by dry weight of clay. Series of tests were performed to determine the SWCC for the different lime content under curing periods of 7 and 28 day. Correlations between key features of the soil water characteristic curves of lime treated expansive soils and basic engineering behavior such as swelling characteristics and unconfined compression strength were established. Test results revealed that initial slope ($S_1$), saturated water content ($w_{sat}$), and air entry value (AEV) play an important role in reflecting improvement in engineering behavior achieved by lime treatment.

A Study on Applicability of Soil Strength for Surface Treatment (표층처리를 위한 현장의 강도적용에 관한 연구)

  • Yang, Tae-Seon;Kim, Byeong-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.45-52
    • /
    • 2005
  • Most marine structures are constructed on very soft soil, soil improvements are needed for the area of road, buildings. In this paper, some considerations of several case studies on soil placement method after geotextile placement, known as surface treatment, are done. Considerations of strength applicability on the advanced construction method of sand and soil placement are proposed in this paper. Typical tensile strength of geotextile used in the surface soil stabilization method is 15t/m, and thickness of sand and soil placement between 1.6m and 3.1m. Undrained shear strength of soft clay layer ranges $0.2{\sim}1.2t/m^2$. In order to minimize the difficulties which include soil disturbance, soft soil gush and overturn of vertical drain installation rig more studies are needed.

  • PDF

Consolidation characteristics of Soft Clay from Piezocone Dissipation Tests (피조콘 소산시험을 이용한 연약지반의 압밀특성)

  • 윤길림;구자갑
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.13-22
    • /
    • 2000
  • 서해안에 위치한 특정 연구현장에서 연약지반의 압밀거동을 파악하기 위한 소산시험을 포함한 콘관입시험을 수행했다. 연구현장에서 시험시공으로 적용한 연약지반개량공법으로는 압성토공법, 두 종류의 페이퍼드레인 공법, 팩드레인 공법이었으며 각각의 공법들에 있어 현장에서의 지반개량에 따른 압밀거동을 판정하기 위해서 적용되었다. 콘관입시험은 근본적으로 지반개량 전과 후에 보링, 표준관입시험, 압밀시험과 함께 수행되었다. 실내실험과 피조콘관입시험을 비교한 결과, 연약지반의 표층에서는 상당한 지반개량효과가 있었으나 표층아래 심층지반에서는 그렇치 않았다. 그리고 지반개량 후, 10개월이 지난 시점에 압밀시험과 소산시험 결과를 통하여 분석한 수평압밀계수는 압성토 방법을 제외한 3가지 개량공법을 적용한 지점에서 압밀계수는 감소하여 개량효과를 간접적으로 판단할 수 있었다.

  • PDF

Analysis of Soil Improvements and Soil Characteristics of the High Yielding Paddies (다수확답(多收穫畓) 토양(土壤)의 관리상황(管理狀況)과 이화학적(理化學的) 특성(特性) 분석(分析))

  • Shin, Weon-Kyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.207-211
    • /
    • 1984
  • A series of soil surveys was conducted in 102 high yielding paddies randomly selected. Each paddy field was the contest winner's in a county, a province or the nationwide during 1976 to 1979. The data on soils and yields of the paddies were evaluated to find out the better practices. Cultivation practices such as intermittent irrigation, deep ploughing and application of soil improvement materials were intensively carried out with the increasing rates of yield. But, the yield of rice in the high yielding paddies was not significantly different according to the paddy soil type or the suitability calss. About 70% of the high yielding paddies were distributed in loam and silty clay loam. The properties of top soil in the high yielding paddies were more improved as compared with the common paddies. The cultivated soil depth and nutrient holding capacity were thought of as the important soil factors for high yield.

  • PDF

Development and Application of Penetration Type Field Shear Wave Apparatus (관입형 현장 전단파 측정장치의 개발 및 적용)

  • Lee, Jong-Sub;Lee, Chang-Ho;Yoon, Hyung-Koo;Lee, Woo-Jin;Kim, Hyung-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.67-76
    • /
    • 2006
  • The reasonable assessment of the shear stiffness of a dredged soft ground and soft clay is difficult due to the soil disturbance. This study addresses the development and application of a new in-situ shear wave measuring apparatus (field velocity probe: FVP), which overcomes several of the limitations of conventional methods. Design concerns of this new apparatus include the disturbance of soils, cross-talking between transducers, electromagnetic coupling between cables, self acoustic insulation, the constant travel distance of S-wave, the rotation of the transducer, directly transmitted wave through a frame from transducer to transducer, and protection of the transducer and the cable. These concerns are effectively eliminated by continuous improvements through performing field and laboratory tests. The shear wave velocity of the FVP is simply calculated, without any inversion process, by using the travel distance and the first arrival time. The developed FVP Is tested in soil up to 30m in depth. The experimental results show that the FVP can produce every detailed shear wave velocity profiles in sand and clay layers. In addition, the shear wave velocity at the tested site correlates well with the cone tip resistance. This study suggests that the FVP may be an effective technique for measuring the shear wave velocity in the field to assess dynamic soil properties in soft ground.

Evaluation of Mechanical Characteristics and Applicability of Clayey Sand by Fines Content (세립분 함유율에 따른 점토질 모래의 역학적 특성 및 적용성 평가)

  • Jung-Meyon Kim;Jun-Young Ahn;Jae-young Heo;Seung-Joo Lee;Young-Seok Kim;Beom-Soo Moon;Yong-Seong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.47-59
    • /
    • 2023
  • In this research, laboratory tests were conducted on clayey sand (SC) to analyze its physical properties, compaction/permeability characteristics, and stress-strain behavior. The main objective was to determine the transitional fines content at which the mechanical properties of sand transition to those of clay, resulting in a change in the geotechnical behavior of the material. Additionally, to assess the practical applicability of SC soil, field data from a soft ground improvement site with significant settlement issues were collected. The settlement characteristics derived from laboratory tests and numerical simulations were then compared and analyzed in relation to the actual settlement data obtained from the field, aiming to evaluate the suitability of the SC soil as a compaction target layer. The laboratory tests and compaction analysis showed that the SC soil exhibited a distinct change in mechanical properties, shifting from sandy behavior to clayey behavior when the fines content exceeded 25%. This transition in mechanical behavior was found to be closely correlated with the content of clay particles within the material. Through numerical simulations of the soft ground site, it was verified that the use of clayey sand with a fines content exceeding the transitional level as a compaction target layer resulted in settlements that closely aligned with the measured settlements, with an average agreement of 91.2%. Based on these findings, it is deemed advisable to incorporate clayey sand with a fines content exceeding the transitional level as part of the compaction target layer in the design of soft ground improvements.

Mechanical Characteristics of Light-weighted Soils Using Dredged Soils (준설토를 활용한 경량혼합토의 역학적 특성 연구)

  • 윤길림;김병탁
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.75-83
    • /
    • 2002
  • This paper is to investigate the mechanical characteristics of light-weighted soils (LWS) consisting of expanded polystyrene(EPS), dredged clays and cement by using both uniaxial and triaxial compression tests. The mechanical characteristics of the compressive strength of LWS are analysed with varying initial water contents of dredged clays, EPS ratio, cement ratio, and curing stress. In the triaxial compression state, it is found that the compressive strength of LWS containing EPS is independent on the effective confined stress. As the EPS ratio decreases($A_E$<2%) and cement ratio increases($A_c$>2%), the behavior characteristics of triaxial compressive strength-strain relationship is similar to that of cemented soil which decreases rapidly in compressive strength after ultimate compressive strength. For the applications of LWS to ground improvements which require the compressive strength of up to 200kPa, the optimized EPS ratio and initial water content of dredged clay are estimated to be 3~4% and 165~175%, respectively. Also, the ultimate compressive strength under both triaxial test and uniaxial compression states are almost constant for a cement ratio of up to 2% and then critical cement ratio of this LWS shall be 2%.

A Case Study on the Test Execution for DCM using Vietnam CFBC Fly Ash Solidification Material (베트남 순환유동층 발전(CFBC) 플라이애시 고화재를 사용한 심층혼합 처리공법(DCM) 시험시공 사례)

  • Kim, Keeseok;Lee, Dongwon;Lee, Jaewon;Kwon, Yongkyu;Yu, Jihyung;Hoang, Truong Xuan;Jung, Chanmuk;Min, Kyongnam
    • Resources Recycling
    • /
    • v.27 no.5
    • /
    • pp.38-48
    • /
    • 2018
  • Deep cement mixing method (DCM) is used to improve the quality of various ground type and its technical development proceeding based on performance improvements of solidification materials and mixing techniques with ground soil. In this study, it was possible to improve silty clay ground soil had 1 to 3 MPa compressive strength using solidification material that composed mainly circulating fluidized bed combustion (CFBC) power plant fly ash and reduce standard deviation of strengths from over 1.0 MPa to 0.322 MPa using improved auger bits in field test to forming more uniform bulbs than in case of using existing auger bit.