• Title/Summary/Keyword: Clay minerals

Search Result 522, Processing Time 0.025 seconds

Micromorphological Characteristics of Soil with Different Patent Materials (모재별 토양의 미세형태 특성)

  • Zhang, Yong-Seon;Jung, Seog-Jae;Kim, Sun-Kwan;Park, Chang-Jin;Jung, Yeon-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.5
    • /
    • pp.293-303
    • /
    • 2004
  • This experiment was conducted to investigate the direction or orientation of clay particle movement in argillic horizons (Bt) for clarifying the soil classification of soils. Soil samples were collected from 22 soil series containing Bt horizons. Physical and chemical characteristics and mineral and chemical compositions of clay in the soils were analyzed. Micoromorphological characteristics of the Bt horizons were also investigated with thin sections of the natural undisturbed and oriented soil samples. Average clay content in the Bt horizons was 28% and 1.33 times higher comparing to that in the surface layer. Soil pH was higher, but cation exchange capacity (CEC) and organic matter content were lower in Bt horizon than those in the surface layer. There was an evidence of clay accumulation in Bt horizons of all soil series examined except Bangog series. Although there was an increase of clay content in the horizons in Bangog series, the clay was not originated from illuviation process. The translocation of clay was in the order of an 2:1 expandable clay minerals > 2:1 non-expandable clay minerals > 1:1 clay minerals. The illuvial substances in argillic horizon were composed with clay, amorphous iron and opaque mineral. The micoromorphological features of Bt horizon were void coating, channel infilling and grain coating. There was an apparent boundary between clay coating and the groundmass in residuum and colluvium, but Bt horizon of alluvium was composed of a skew plane amputated by the physical operation.

Mineral Distribution of the Southeastern Yellow Sea and South Sea of Korea using Quantitative XRD Analysis (정량X선회절분석법을 이용한 황해 남동부, 한국남해 및 제주도 남단 표층퇴적물의 광물분포 연구)

  • Moon, Dong-Hyeok;Yi, Hi-Il;Shin, Kyung-Hoon;Do, Jin-Young;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.49-61
    • /
    • 2009
  • We studied the mineral composition and mineral distribution pattern of 131 surface sediments collected at the cruise in 2000 and 2007 from Southeastern Yellow Sea, South Sea of Korea and Southern part of Jeju Island. Mineral compositions of surface sediments were determined using the quantitative X-ray diffraction analysis. Surface sediments were composed of rock forming minerals (quartz 37.4%, plagioclase 11.7%, alkali feldspar 5.5%, hornblende 3.1%), clay minerals (illite 19.2%, chlorite 4.7%, kaolinite 1.8%) and carbonate minerals (calcite 10.7%, aragonite 3.4%). Distribution of clay minerals is very similar with fine-grained sediments, and especially same as the distribution of HSMD (Hucksan Mudbelt Deposit), SSKMD (South Sea of Korea Mudbelt Deposit) and JJMD (Jeju Mudbelt Deposit). The coarse sediment seemed to be relic sediment during the last glacial maximum and mainly consisted of rock forming minerals. Whereas the fine sediments mainly composed of clay minerals. Based on the clay mineral composition, main ocean current and geographical factor, HSMD and SSKMD might have derived from the rivers around the Korean Peninsula. However, JJMD is complex mudbelt deposit, which formed by Korean rivers and oceanic sediments.

Mineralogical and Geochemical Properties and Origin of Clay-silt Sediments, Suwon, Korea (경기도 수원시에서 산출되는 적갈색 점토-실트 퇴적물의 광물 및 지화학 특성과 기원)

  • Jeong, Gi Young
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.3
    • /
    • pp.153-163
    • /
    • 2020
  • Mineral and geochemical analysis were conducted on two sections (~3.5 m) of red-brown claysilt sediments covering the gneiss and granite weathering zones in Suwon-si for establishing Quaternary paleoenvironmental changes in Korea. The sections were divided into four sedimentary layers (Unit 1-4) by vertical changes in mineral composition and chemical composition. The lowermost unit 1 was a sandy sediment with a high K-feldspar content with a significant contribution of weathered bedrock. Unit 2 was a transition layer showing intermediate characteristics. Unit 3 was a reddish brown clay-silt sediment, with a total clay content of 58% on average, and the main clay minerals were illite-smectite mixed layer minerals and hydroxy-interlayered vermiculite/smectite. Unit 3 contained almost no plagioclase, while the content of kaolin minerals derived by the plagioclase weathering was higher than in the other layers. Unit 4 had similar mineral composition and chemical properties to Unit 3, but had a higher content of plagioclase and chlorite and lower content of kaolin minerals. The chemical compositions of the sections were compared with those in other regions of Korea, suggesting the eolian origin of Units 3 and 4. The paleoenvironmental change in the sedimentary section of this region was interpreted as follows. Weathered products of gneiss and granite, which are bedrocks of this region, were eroded and deposited as sandy sediments in the periphery to form the lower layers (Unit 1, 2), followed by the deposition of the claysilty rich eolian sediments (Unit 3) during the glacial. Unit 3 was chemically weathered during the warm humid climate during the last interglacial, developing a reddish brown color. After that, a eolian sediment layer (Unit 4) was deposited during the last glacial.

Characteristics and Phase Transition of Clay Minerals as the Results of Bentonite Weathering (벤토나이트의 풍화에 따른 점토광물의 상전이 및 광물특성)

  • 노진환;이석훈
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.147-159
    • /
    • 2002
  • Weathered bentonites occcur as surficial alterations of some domestic bentonite deposits in the Tertiary formations, with the thickness of less than about 50 cm, along naturally-formed weathering surface with slopping in gentle. 7 $\AA$-halloysite was found together with montmorillonite in the weathered bentonite. Compared to normal bentonite, the weathered one is generally more clay-rich and contains little amounts of original rock-forming minerals and residues. In the electron microscopy, fine-scale occurrence of the clay minerals tends to be somewhat discrete and segregated rather than closely associated. h curled margin of montmorillonite lamella is deformed to become obtuse in the weathered bentonite. Halloysite occurs as acicular to tubular crystals with the length of less than 2 $\mu$m and the width of about 0.3 $\mu$m, which commonly forms bundle-shaped aggregates. Electron microscopic observations on the fine-scale occurrence and texture of the wtathered bentonites indicate that the clay mineral transition from montmorillonite to halloysite has undergone without accompanying any intermediate phases of both clay minerals such as a mixed-layered type (M/H). The alteration reaction between these two clay minerals probably took place in the form of dissolution and precipitation mechanism in oxidation condition. An intense chemical leaching of SiO$_2$, Na, K and Ca might occur during the alteration reaction, forming a lot of dissolution cavity and residual concentration of A1$_2$O$_3$ and Fe, relatively. As the result of the chemical change, a fsvorable condition for halloysite formation seemed to be provided.

Fabrication of Calcined Clay Granule Comprising Zeolite (제올라이트를 함유하는 소성점토의 제조)

  • Kim, Byoung-Gon;Lee, Gye-Seung;Park, Chong-Lyuck;Jeon, Ho-Seok;Jeong, Soo-Bok
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.239-246
    • /
    • 2008
  • This research tried to find out the optimum fabrication method of calcined clay granules comprising zeolite. Kaolin clay and natural zeolite powder were used as raw materials of calcined clay, and silica stone powder was used for controlling the porosity of the granules. The granulation was performed with two kinds of granulators: a pan granulator and a high-shear mixer granulator. Various granules were fabricated by the mixing ratios and the rotation speeds of the granulators, and were heated from 400 to $700^{\circ}C$ at $100^{\circ}C$ interval. The crushing strength, pore size distribution, and CEC of the granules were measured. The evaluation method for the resistance of granules to human treading was created and the tests were conducted at dry and wet conditions. The resistance and crushing strength improved in proportion to the rotation speed of the granulator and the heating temperature, but the CEC decreased. The pellet made by the pan granulator did not have the strength against treading upon heating to below $700^{\circ}C$, but the pellet made by the high-shear mixer granulator endured the treading test upon heating to over $500^{\circ}C$

Geomechanical properties of synthesised clayey rocks in process of high-pressure compression and consolidation

  • Liu, Taogen;Li, Ling;Liu, Zaobao;Xie, Shouyi;Shao, Jianfu
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.537-546
    • /
    • 2020
  • Oil and natural gas reserves have been recognised abundantly in clayey rich rock formations in deep costal reservoirs. It is necessary to understand the sedimentary history of those reservoir rocks to well explore these natural resources. This work designs a group of laboratory experiments to mimic the physical process of the sedimentary clay-rich rock formation. It presents characterisation results of the physical properties of the artificial clayey rocks synthesized from illite clay, quartz sand and brine water by high-pressure consolidation tests. Special focus is given on the effects of illite clay content and high-stress consolidation on the physical properties. Multi-step loaded consolidation experiments were carried out with stress up to 35 MPa on mixtures constituting of the illite clay, quartz sand and brine water with five initial illite clay contents (w=85%, 70%, 55%, 40% and 25%). Compressibility and void ratio were characterised throughout the physical compaction process of the mixtures constituting of five illite clay contents and their water permeability was measured as well. Results show that the applied stress induces a great reduction of clayey rock void ratio. Illite clay contents has a significant influence on the compressibility, void ratio and the permeability of the physically synthesized clayey rocks. There is a critical illite clay content w=70% that induces the minimum void ratio in the physically synthesised clayey rocks. The SEM study indicates, in the high-pressure synthesised clayey rocks with high illite clay contents, the illite clay minerals are located in layers and serve as the material matrix, and the quartz minerals fill in the inter-mineral pores or are embedded in the illite clay matrix. The arrangements of the minerals in microscale originate the structural anisotropy of the high-pressure synthesised clayey rock. The test findings can give an intuitive physical understanding of the deep-buried clayey rock basins in energy reservoirs.

Correlation Between Engineering Properties and Mineralogy of Clay Sediments in the Estuary of the Nakdong River (낙동강 하구지역 점토퇴적물의 광물조성과 토질물성과의 상관관계)

  • Lee Sonkap;Kim Jin-Seop;Um Jeong-Gi;Hwang Jin-Yeon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.93-107
    • /
    • 2005
  • The estuary of Nakdong River area including Noksan industrial complex and Busan New Port is composed of thick unconsolidified sediments containing abundant clay, and thus is a potential hazardous area of ground subsidence. We analyzed mineral compositions and geotechnical properties of the clay sediments that sampled from 4 boreholes of the area, and examined vertical variations and their correlations. The results showed correlations between some mineral constituents and geotechnical properties of clay sediments. A positive correlation showed between quartz content and wet unit weight, whereas a negative correlation showed between quartz content and liquid limit. Feldspar content and water content showed a negative correlation, whereas content of clay minerals and liquid limit showed a positive correlation. And also, there is a negative correlation between content of clay minerals and wet unit weight. Correlation equations are obtained from the multiple regression analyses among plastic index, content of clay mineral, smectite and clay fraction.

Comminution-Classification of Clay-type Minerals by Fluid Energy Mill (Fluid Energy Mill에 의한 점토성 무기소재 미립화 분급기술 소고)

  • 김태욱;김만영;정필조;이주완
    • Journal of the Korean Ceramic Society
    • /
    • v.22 no.5
    • /
    • pp.47-53
    • /
    • 1985
  • In view of innovated utilization of Korean clay resources conventional techniques for pulverization are reviewed in comparison with fluid energy milling processes of fluidized-bed type. Throughout experiment indigenous halloysite ores (white grade) after usual pretreatment are employed as typical sample. It is evidenced that grinding by means of porcelain ball mills has limitation in reducing clay particles to less than 10${\mu}{\textrm}{m}$ in diameter regardless of whether it is processed in dry or wet. Upon use of tungsten carbide bull mill particulation to submicron sizes could be effected with relative ease but severe coloration in grey is attended indicating metallic contamination possibly from friction of the grinding apparatus itself. In contrast the modified fluid en ergy milling enables particulation to $\leq$10${\mu}{\textrm}{m}$ in diameter with simultaneous classification int olimited ranges of particle size distributions. Since this technique is in principle based on the interparticle collisions rather than on the frictions between particles and mill surfaces minimum impurity attendance would be an additional advantage. Evidence leads to the conclusion that the fluidized-bed type milling is regarded as highly effective in puverization as well as fractionation of the clay minerals under examination. This is especially so in contemplating high-value and/or high-purity clay products.

  • PDF

Novel bricks based lightweight Vietnam's white clay minerals for gamma ray shielding purposes: An extensive experimental study

  • Ta Van Thuong;O.L. Tashlykov;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.666-672
    • /
    • 2024
  • In the present work, a new brick series based on the Vietnamese white clay minerals from the Bat Trang was fabricated to be applied in the radiation protection applications during the decommissioning of the nuclear power reactors. The bricks were constructed under various pressure rates varied from 7.61 MPa to 114.22 MPa. The influence of pressure rate on the physical and γ-ray shielding properties were investigated in the study. The experimental measurement for the material's density using the MH-300A density meter showed an enhancement in the prepared bricks' density by 22.5 % with increasing the applied pressure rate while the bricks' porosity reduced by 31.2 % when the pressure rate increased from 7.61 MPa to 114.22 MPa. The increase in the fabricated bricks density and the reduction in their porosities enhances the bricks' linear attenuation coefficients as measured by the NaI (Tl) detector along the energy range extended from 0.662 MeV to 1.332 MeV. The linear attenuation coefficient increased by 13.8 %, 17.6 %, 17.0 %, and 17.1 % at gamma ray energies of 0.662 MeV, 1.173 MeV, 1.252 MeV, and 1.332 MeV, respectively. The enhancement in the linear attenuation coefficient increases the bricks' radiation protection efficiency by 10.22 %, 14.48 %, 14.09 %, and 14.26 % at gamma ray energies of 0.662 MeV, 1.173 MeV, 1.252 MeV, and 1.332 MeV, respectively.

Mineralogy and Chemical Composition of the Residual Soils (Hwangto) from South Korea (우리 나라 황토(풍화토)의 구성광물 및 화학성분)

  • 황진연;장명익;김준식;조원모;안병석;강수원
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.147-163
    • /
    • 2000
  • The mineralogy and chemical composition of reddish to brownish yellow residual soils, so called "Hwangto" have been examined according to representative host rocks. The result of the study indicates that Hwangto consists of 40-80% clay minerals and various minerals such as quartz, feldspar, hornblende, goethite, and gibbsite. Clay minerals include kaolinite, halloysite, illite, hydroxy interlayered vermiculite (HIV), mica/vermiculite interstratifield mineral and chlorite. The mineralogical constituents and contents of Hwangto were different depending on the types of host rocks. Moreover, the Jurassic granitic rocks contain relatively more kaolin minerals, whereas the Cretaceous granitic rocks contain more HIV and illite. In addition, reddish Hwangto contains relatively more kaolinite and HIV, and yellowish Hwangto contains more illite and halloysite. It is suggested that feldspars and micas of host rocks were chemically weathered into illite, halloysite, illite/vermiculite interstratified minerals, and HIV, and finally into kaolinite. Compared with their host rocks, the major chemical compositions of Hwangto tend to contain more $Al_2O_3,\;Fe_2O_3,\;H_2O$ in amount and less Ca, Mg, and Na. Hwangto contains relatively high amount of trace elements, P, S, Zr, Sr, Ba, Rb, and Ce including considerable amount of Li, V, Cr, Zn, Co, Ni, Cu, Y, Nb, La, Nd, Pb, Th in excess of 10 ppm. Relatively high amount of most trace elements were detected in the Hwangto. The major and minor chemical compositions of the Hwangto were different depending on the types of host rocks. However, their difference was in the similar range compared with the compositions of host rocks.

  • PDF