DOI QR코드

DOI QR Code

Mineralogical and Geochemical Properties and Origin of Clay-silt Sediments, Suwon, Korea

경기도 수원시에서 산출되는 적갈색 점토-실트 퇴적물의 광물 및 지화학 특성과 기원

  • Jeong, Gi Young (Department of Earth and Environmental Sciences, Andong National University)
  • 정기영 (안동대학교 지구환경과학과)
  • Received : 2020.09.10
  • Accepted : 2020.09.24
  • Published : 2020.09.30

Abstract

Mineral and geochemical analysis were conducted on two sections (~3.5 m) of red-brown claysilt sediments covering the gneiss and granite weathering zones in Suwon-si for establishing Quaternary paleoenvironmental changes in Korea. The sections were divided into four sedimentary layers (Unit 1-4) by vertical changes in mineral composition and chemical composition. The lowermost unit 1 was a sandy sediment with a high K-feldspar content with a significant contribution of weathered bedrock. Unit 2 was a transition layer showing intermediate characteristics. Unit 3 was a reddish brown clay-silt sediment, with a total clay content of 58% on average, and the main clay minerals were illite-smectite mixed layer minerals and hydroxy-interlayered vermiculite/smectite. Unit 3 contained almost no plagioclase, while the content of kaolin minerals derived by the plagioclase weathering was higher than in the other layers. Unit 4 had similar mineral composition and chemical properties to Unit 3, but had a higher content of plagioclase and chlorite and lower content of kaolin minerals. The chemical compositions of the sections were compared with those in other regions of Korea, suggesting the eolian origin of Units 3 and 4. The paleoenvironmental change in the sedimentary section of this region was interpreted as follows. Weathered products of gneiss and granite, which are bedrocks of this region, were eroded and deposited as sandy sediments in the periphery to form the lower layers (Unit 1, 2), followed by the deposition of the claysilty rich eolian sediments (Unit 3) during the glacial. Unit 3 was chemically weathered during the warm humid climate during the last interglacial, developing a reddish brown color. After that, a eolian sediment layer (Unit 4) was deposited during the last glacial.

우리나라 제4기 고환경 변화 특성 규명을 위하여 수원시의 편마암 및 화강암 풍화대를 피복하는 적갈색 점토-실트 퇴적물 2개 단면(~3.5 m)에 대하여 광물 및 지화학 분석을 실시하였다. 퇴적층은 광물조성과 화학조성의 수직 변화를 기준으로 4개의 퇴적층(Unit 1-4)으로 구분되었다. 최하부 Unit 1은 K-장석 함량이 높은 사질 퇴적물로서 기반암 풍화물의 기여도가 높다. Unit 2는 전이층이며, Unit 3은 적갈색 점토-실트질 퇴적물로서 총점토 함량이 평균 58%이며, 주요 점토광물은 일라이트-스멕타이트 혼합층 광물과 수산기삽입질석/스멕타이트이다. Unit 3에는 사장석이 거의 함유되어 있지 않은 반면에, 그 풍화물인 고령토 광물의 함량이 다른 층들보다 높다. Unit 4는 전반적 광물조성과 화학적 특성이 Unit 3과 유사하나, 사장석과 녹니석의 함량이 더 높고 고령토 광물의 함량은 더 낮다. 단면내 화학성분 변화를 국내 타지역 적갈색 점토-실트층과 비교한 결과, Unit 3과 4는 풍성퇴적물의 범위에 포함되었다. 이 지역 퇴적 단면에서 고환경변화는 다음과 같이 해석된다. 기반암인 편마암과 화강암 풍화물이 침식되어 주변부에 사질 퇴적물로 퇴적되어 하부층(Unit 1, 2)을 이루고, 그 위에 빙하기의 점토-실트질 풍성퇴적물층(Unit 3)이 퇴적되었다. Unit 3은 간빙기의 풍화작용으로 풍화되어 전체적으로 적갈색 토양화되었다. 그 후 다시 빙하기로 접어들면서 최상부에 풍성퇴적물층(Unit 4)이 퇴적되었다.

Keywords

References

  1. Banhisel, R.I. and Bertsch, P.M., 1989, Chlorites and hydroxy-interlayered vermiculite and smectite. In: Dixon, J.B., Weed, S.B. (Eds.), Minerals in soil environment. Soil Science Society of America, Madison, 729-788.
  2. Brindley, G.W., 1980, Order-disorder in clay mineral structures. In: Brindley, G.W., Brown, G. (eds.), Crystal structures of clay minerals and their X-ray identification, Monograph 5, Mineralogical Society, London, 125-195.
  3. Jackson, M.L., 1962, Interlayering of expansible layer silicates in soils by chemical weathering. Clays and Clay Minerals, 11, 29-46. https://doi.org/10.1346/CCMN.1962.0110104
  4. Jeong, G.Y., 2020, Mineralogy and geochemistry of Asian dust: dependence on migration path, fractionation, and reactions with polluted air. Atmospheric Chemistry and Physics, 20, 7411-7428. https://doi.org/10.5194/acp-20-7411-2020
  5. Jeong, G.Y. and Lee, B.Y., 1998, Weathering of Plagioclase in Palgongsan Granite Journal of the Geological Society of Korea, 34, 44-57.
  6. Jeong, G.Y., Hillier, S., and Kemp, R.A., 2008, Quantitative bulk and single-particle mineralogy of a thick Chinese loess-paleosol section: implications for loess provenance and weathering. Quaternary Science Reviews, 37, 1271-1287.
  7. Jeong, G.Y., Hillier, S., and Kemp, R.A., 2011, Changes in mineralogy of loess-paleosol sections across the Chinese Loess Plateau. Quaternary Research, 75, 245-255. https://doi.org/10.1016/j.yqres.2010.09.001
  8. Jeong, G.Y., Choi, J.H., Lim, H.S., Seong, C.T., and Yi, S.B., 2013, Deposition and weathering of Asian dust in Paleolithic sites, Korea. Quaternary Science Reviews, 78, 283-300. https://doi.org/10.1016/j.quascirev.2013.08.002
  9. KIGAM, 2020, Multiplatform Geoscience Information System, https://mgeo.kigam.re.kr/, Korea Institute of Geoscience and Mineral Resources.
  10. Kim, J.Y., Bae, K., Yang, D.Y., Nahm, W.H., Hong, S.S., Ko, S.M., Lee, Y.S., and Kang, M.K., 2002, A preliminary result of soil and sediment analysis in the Pit-E55S20 of Chongok Palaeolithic site, Korea. In: Bae, K. (Ed.), Paleolithic Archaeology in Northeast Asia. Institute of Cultural Properties, Hanyang University, Ansan, Korea, 117-146.
  11. Kim, J.Y., Lee, G.G., Yang, D.Y., Hong, S.S., Nahm,W.H., and Lee, J.Y., 2004, Research on the distribution and formation process of Quaternary deposits of South Korea. Journal of Korean Palaeolithic Society, 10, 1-24.
  12. Kim, Y., Bae, J.R., Kim, C.-B., and Roh, Y., 2014, Pedological and Mineralogical Characterizations of Hwangto (Yellow Residual Soils), Naju, Jeollanam-do, Korea. Economic and Environmental Geology, 47, 87-96. https://doi.org/10.9719/EEG.2014.47.2.87
  13. Kwak, T.H. and Jeong, G.Y., 2017, Mineralogical and Geochemical Properties of Clay-silt sediments Exposed in Jangdongri, Naju, Korea. Journal of the Mineralogical Society of Korea, 30, 11-19. https://doi.org/10.9727/jmsk.2016.30.1.11
  14. Lee, D.Y., 1999, Quaternary Research of Korea. Assembled Papers by Late D.Y. Lee. Hyean, Seoul.
  15. Lee, J.C., 2007, Report on the Excavation of Paleolithic Site in Yeonyang-ri, Yeoju, Korea. Gyeonggi Cultural Foundation, Suwon, Korea.
  16. Lee, Y.I., and Yi, S., 2002. Characteristics of Pyeongchangri Paleolithic-site paleosols, Yongin-si, Gyeonggi-do, Korea: implications for archaeogeological application. Journal of the Geological Society of Korea 38, 471-489.
  17. Moore, D.M. and Reynolds, R.C., 1997, X-ray diffraction and the identification and analysis of clay minerals.
  18. Shin, J.-B., Naruse, T., and Yu, K.-M., 2005, The application of loess-paleosol deposits on the development age of river terraces at the midstream of Hongcheon River. Journal of the Geological Society of Korea, 41, 323-333.
  19. Shin, J.-B., Yu, K.-M., Naruse, T., and Hayashida, A., 2004, Study on loess-paleosol stratigraphy of Quaternary unconsolidated sediments at E55S20-IV pit of Chongokni Paleolithic site. J. Geol. Soc. Korea, 41, 369-381.
  20. Yi, S., 2000, For chronology and stratigraphy of Korean Paleolithic. Journal of the Korean Archaeological Society, 42, 1-22.
  21. Yi, S., Soda, T., and Arai, F., 1998, New discovery of Aira-Tn ash (AT) in Korea. Journal of the Korean Geographic Society, 33, 447-454.
  22. Yoon, S., Park, C.-S., and Hwang, S., 2011, Geochemical properties of loess-paleosol sequence in the Haemi area, Seosan, Chungnam Province, South Korea. Journal of the Geological Society of Korea, 47, 343-362.
  23. Yu, K.-M., Shin, J.-B., and Naruse, T., 2008, Loess-paleosol stratigraphy of Dukso area, Namyangju City, Korea (South). Quaternary International, 176-177, 96-103. https://doi.org/10.1016/j.quaint.2007.05.007