• Title/Summary/Keyword: Clay loam

Search Result 408, Processing Time 0.027 seconds

Experiment for Various Soils on Economic Duty of Water in Paddy Fields (각종토성별 경제적용수량 결정시험연구)

  • Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1561-1579
    • /
    • 1969
  • In Korea, the duty of water in paddy fields was measured at the Agricultural Experimental Station in Suwon about 60 years ago. After that time some testing has been made in several places, but the key points in its experiment were the water depth of evapo-transpiration. Improved breeds, progress in cultivation and management techniques as well as development of measuring apparatus in recent years have necessitated the review of the duty of water in paddy fields. The necessity of reviewing the conventional methods has become even more important, as no source of information has been made available through survey of water utilization on a soil use basis which requires data on peculiar features of the water depth of evapo-transpiration. For example, the duty of water in paddy field is largely affected by the water depth of evapo-transpiration in connection with the wetted paddy field, whereas in connection with the normal paddy fields without this characteristic the vertical percolation become the predominant factor in measuring the decreasing depth of water. Therefore, it becomes important. that not only the water depth of evapotranspiration but also the vertical percolation process should also be observed in order to arrive at a realistic conclusion. As the vertical percolation has aclose relationship to the height of the underground water, the change of the latter can be measured. As the conclusion of this experiment, the following subjects are indicated. 1. In order to determine the economic duty of water in paddy fields on a basis of varying soil features, the varying soil features in the benifited area should be investigated thoroughly. The water depths of evapo-transpiration(ET) ratio to evaporation in the evaporator(V) on a basis of the varying soil features are as follows: clay loam ET/V = 1.11, loam ET/V = 1.64, sandy loam ET.V = 1.63 2. The decreasing depth of water consists of the water depth of evapotranspiration, the vertical per colation and the percolation of foot path. Among these three, the percolation of foot path can be utilized again. 3. As the result of this experiment, it shows the decreasing depth of water as follows. clay loam 9.3 mm/day, loam 13.5mm/daty, sandy loam 15.3mm/day 4. On a basis of the varying soil features and the height of the underground water, the vertical percolation varies. 5. The change of the vertical percolation on a basis of the varying soil features shows as follows: clay loam $1{\sim}2$ mm/day, loam $2{\sim}3$mm/day, sandy loam $3{\sim}4$mm/day 6. The level of the underground water changes sensibly by priority of clay loam, loam, sandy loam. When it rains, the level of the underground water rises fast and falls down slowly. 7. The level of the underground water changes within the scope of 25cm 8. The transpiration ratio is given in table 8 and their value are as follows: clay loam 168.8, loam 255.6, sandy loam 272.5

  • PDF

Assessment of Green House Gases Emissions using Global Warming Potential in Upland Soil during Pepper Cultivation (고추재배에서 지구온난화잠재력 (Global Warming Potential)을 고려한 토성별 온실가스 발생량 종합평가)

  • Kim, Gun-Yeob;So, Kyu-Ho;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.886-891
    • /
    • 2010
  • Importance of climate change and its impact on agriculture and environment have increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere, which caus an increase of temperature in Earth. Greenhouse gas emissions such as carbon dioxide ($CO_2$), methane ($CH_4$) and nitrous oxide ($N_2O$) in the Upland field need to be assessed. GHGs fluxes using chamber systems in two upland fields having different soil textures during pepper cultivation (2005) were monitored under different soil textures at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city, Korea. $CO_2$ emissions were 12.9 tonne $CO_2\;ha^{-1}$ in clay loam soil and 7.6 tonne $CO_2\;ha^{-1}$ in sandy loam soil. $N_2O$ emissions were 35.7 kg $N_2O\;ha^{-1}$ in clay loam soil and 9.2 kg $N_2O\;ha^{-1}$ in sandy loam soil. $CH_4$ emissions were 0.054 kg $CH_4\;ha^{-1}$ in clay loam soil and 0.013 kg $CH_4\;ha^{-1}$ in sandy loam soil. Total emission of GHGs ($CO_2$, $N_2O$, and $CH_4$) during pepper cultivation was converted by Global Warming Potential (GWP). GWP in clay loam soil was higher with 24.0 tonne $CO_2$-eq. $ha^{-1}$ than that in sandy loam soil (10.5 tonne $CO_2$-eq. $ha^{-1}$), which implied more GHGs were emitted in clay loam soil.

Adsorption, Movement and Decomposition of New Herbicide Bensulfuron-methyl in Soils (신규(新規) 제초제(除草劑) Bensulfuron-methyl 토양중(土壤中) 흡착(吸着), 이동(移動) 및 분해성(分解性))

  • Jang, I.S.;Moon, Y.H.;Ryang, H.S.
    • Korean Journal of Weed Science
    • /
    • v.7 no.2
    • /
    • pp.165-170
    • /
    • 1987
  • This study was undertaken to elucidate the behavior of herbicide bensulfuron-methyl[methyl-2-[[[[[(4,6-dimethoxy pyrimidine-2yl)amino]carbonyl]amino]sulfonyl]methyl]benzoate]in soils. Adsorption of the herbicide in soils was mainly correlated with content of organic matter and clay, and canon exchange capacity. Adsorption distribution coefficient(Kd value) in clay loam soil was greater than those in loam and sandy loam soils. The Kd value decreased in the order of zeolite, bentonite, halloysite and laziolite clay minerals. Bensulfuron-methyl moved to 3cm deep in clay loam soil and 4cm deep in sandy loam and herbicide treated layer was 0 to 2cm profile in the two soils. The decomposition rate of bensulfuron methyl varied with the soil properties. The rate was slower in sterilized soil than in nonsterilized. Addition of organic matters to the soils accelerated the decomposotion. The degradation was more rapid in 30$^{\circ}C$ soil temperature than in 20$^{\circ}C$.

  • PDF

Growth Characteristics and Available Component of Saururus chinensis Baill in Different Soil Texture (토성에 따른 삼백초 생육특성과 유효성분 함량)

  • Kim, In-Jae;Kim, Min-Ja;Nam, Sang-Young;Yun, Tae;Kim, Hong-Sig;Jong, Seung-Keun;Hong, Seong-Su;Hwang, Bang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.3
    • /
    • pp.143-147
    • /
    • 2006
  • This study was carried to investigate the effect of soil texture on the growth and the contents of quercetin-glycoside and lignans, and to improve the qualities of Saururus chinensis Baill. Soil texture resulted no significant effects on the number of nodes, the number of leaves, the number of branches and dry matter ratio. However, the shoot dry weight was higher in sandy loam, loam, silt loam and sand soil in that order. Although the weight of rhizomes of below 5 mm in diameter was not significantly different among soil textures, the weight of rhizomes between 5.1 and 10.9 mm and the weight of rhizomes of above 11 mm in diameter ranged $437{\sim}465\;g$ and was larger in clay loam than in other soil textures. No significance difference was showed in rhizome dry ratio ranging from 19.1 to 20.8%. The amount of quercetin-glycoside in leaves was higher in loam and sandy loam and ranged from 219.3 to 222.4 mg/100 g of quercetin-glycoside quercitrin, rutin, isoquercitrin and hyperin were higher in that order. On the other hand, quercetin-glycoside contents in stem were 14.8 mg/100 g and 12.4 mg/100 g in sandy and sandy loam, respectively, and were higher than in other soil textures of quercetin-glycoside constituents, the content of rutin was the highest. The content of lignans was increased in clay loam, loam, sandy loam, and sandy in that order of lignans, the manassatin B was the highest.

Threshold Subsoil Bulk Density for Optimal Soil Physical Quality in Upland: Inferred Through Parameter Interactions and Crop Growth Inhibition

  • Cho, Hee-Rae;Han, Kyung-Hwa;Zhang, Yong-Seon;Jung, Kang-Ho;Sonn, Yeon-Kyu;Kim, Myeong-Sook;Choi, Seyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.5
    • /
    • pp.548-554
    • /
    • 2016
  • Optimal range of soil physical quality to enhance crop productivity or to improve environmental health is still in dispute for the upland soil. We hypothesized that the optimal range might be established by comparing soil physical parameters and their interactions inhibiting crop growth. The parameter identifying optimal range covered favorable conditions of aeration, permeability and root extension. To establish soil physical standard two experiments were conducted as follows; 1) investigating interactions of bulk density and aeration porosity in the laboratory test and 2) determining effects of soil compaction and deep & conventional tillage on physical properties and crop growth in the field test. The crops were Perilla frutescens, Zea mays L., Solanum tuberosum L. and Secale cereael. The saturated hydraulic conductivity, bulk density from the root depth, root growth and stem length were obtained. Higher bulk density showed lower aeration porosity and hydraulic conductivity, and finer texture had lower threshold bulk density at 10% aeration bulk density. Reduced crop growth by subsoil compaction was higher in silt clay loam compared to other textures. Loam soil had better physical improvement in deep rotary tillage plot. Combined with results of the present studies, the soil physical quality was possibly assessed by bulk density index. Threshold subsoil bulk density as the upper value were $1.55Mg\;m^{-3}$ in sandy loam, $1.50Mg\;m^{-3}$ in loam and $1.45Mg\;m^{-3}$ in silty clay loam for optimal soil physical quality in upland.

Soil Microbial Diversity of Paddy Fields in Korea (논 토양 서식 미생물의 다양성에 관한 연구)

  • Suh, Jang-Sun;Shin, Jae-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.30 no.2
    • /
    • pp.200-207
    • /
    • 1997
  • In order to evaluate the soil microbiological characteristics of paddy fields in Korea, surface soils were sampled from 63 sites in different agroclimatic zones before submersion of the fields. The distribution of microorganisms and the microbial diversity indices were examined. Soil microbial populations were generally higher in southern area than in northern area. The colony forming units(cfus) of fluorescence Pseudomonas sp. showed the greatest regional differences, among the microbes investigated. On the topographical differences, the cfus of aerobic bacteria, fluorescence Pseudomonas sp. and Azotobacter sp. maintained high level in coastal plains; and on the sail textural difference, fungus was the highest in clay soil, but Bacillus sp., Azotobacter sp and denitrifiers were the highest in silty clay loam soil at 0.05 probability level based on the multiple range test. The numbers of ammonium oxidizers and Azotobacter sp. were increased with soil pH. Microbial diversity indices of paddy fields which calculated from the percentages of Bacillus sp. fluorescence Pseudomonas sp. Azotobacter sp. denitrifiers, ammonium oxidizers, nitrite oxidizers, actinomycetes and fungus to these total microbial numbers were between 0.109 and 0.661. On the soil textures, the microbial diversity indices of sandy, sandy loam, silty clay loam, clay loam and clay soil were 0.443, 0.427, 0.414, 0.405 and 0.362 respectively.

  • PDF

Effects of Soil Moisture on Survival of Larger Black Chafer (Holotrichia morosa Waterhouse) Eggs and Larvae (토양 수분함량이 큰검정풍뎅이의 난 및 유충의 생존에 미치는 영향)

  • 김기황
    • Korean journal of applied entomology
    • /
    • v.30 no.1
    • /
    • pp.37-41
    • /
    • 1991
  • Laboratory experiments were conducted to examine the effects of soil moisture on the survival of the larger black chafer(Holotrichia morosa Waterhouse) eggs and larvae. Survival rates of eggs and 1st, 2nd, and 3rd instar larvae were all above 79% at soil moisture of 15% and 25% in sandy loam and clay loam soil, but decreased considerably at 5% and 35%. At these extreme moistures there seem to be differences in survival rates of eggs and larvae between soil textures. Egg development was delayed as soil moisture approached to the lower limit for survival. Older eggs were tolerant to the high moisture stress(33-36 % , clay loam soil), and duration of the stress affected egg development. Feeding of 3rd instar larvae was obviously suppressed at the higher level of soil moisture.

  • PDF

Effect of Crop Yield and Soil Physical Properties to Application of Organic Resources in Upland (밭 토양에서 유기물 자원의 시용이 작물 수량 및 토양 물리성에 미치는 영향)

  • Han, Kyunghwa;Jung, Kangho;Cho, Heerae;Lee, Hyubsung;Ok, Junghun;Zhang, Yongseon;Kim, Gisun;Seo, Youngho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.25 no.4
    • /
    • pp.15-22
    • /
    • 2017
  • Application of organic resources to agricultural land can increase crop yield by improving soil characteristics. The objective of this study was to evaluate effect of crop yield and soil physical properties including aggregate stability to application of organic resources in upland. The soybean was cultivated in a sandy loam field and a clay loam field located at Suwon and a sandy loam field located at Pyeongchang. The organic resources used in this study were rice straw compost (RSC), composted pig manure with sawdust (CPIG), composted poultry manure with sawdust (CPM), and cocopeat applied before sowing crop. Application rate of organic resources was determined based on carbon content and water content. The inorganic fertilizers were applied based on soil testing. In addition, the decomposition of RSC, CPIG, and cocopeat was characterized by isothermal incubation with sandy loam soil. The decomposition rate was highest for RSC followed by CPIG and cocopeat. Organic resource application increased yield of soybean, which effect was greater in clay loam than in sandy loam. In addition, increase in gas phase proportion by organic resource application was distinct in clay loam soil compared with sandy loam soil. In terms of aggregate stability, increasing effect was more obvious in sandy loam soils than in a clay loam soil. The highest yield was observed in RSC treatment plots for all the fields. Improvement of soybean yield and soil physical characteristics by cocopeat was not as much as that of the other organic resources. The results implied that RSC could be recommended for promoting aggregate stability and crop yield in upland cultivation.

A Study on PCP Adsorption in Various Paddy Soils of the Choongbook Area (충북지방(忠北地方) 답토양(沓土壤)에 대(對)한 PCP 흡착에 관한 연구(硏究))

  • Ok, Hwan-Suk;Lee, Jae-Koo
    • Applied Biological Chemistry
    • /
    • v.15 no.3
    • /
    • pp.229-240
    • /
    • 1972
  • Not only in order to determine reasonable application amounts of PCP in terms of soil texture, but also to get basic data for fish-toxicity-free treatment by estimating fish toxicity, some aspects of PCP adsorption were observed taking various paddy soils with different physico-chemical characteristics in the Choongbook Area as samples. The results obtained are summarized as follows: 1. There was a positive correlation between PCP adsorption and clay contents, total nitrogen, organic matter, cation exchange capacity, exchangeable bases, and phosphorus absorption coefficients, respectively; whereas there was a negative one between PCP adsorption and pH. Although they were not significant, it was remarkable that there was a relatively large amount of correlation between PCP adsorption and clay contents, $H^+,\;Mg^{++}$, and CEC, respectively. 2. PCP adsorption in terms of soil texture was in the order of Clay>Loam>Sandy loam. 3. Although PCP adsorption in the $H_2O_2-treated$ soils decreased remarkably, it was not proportional to the humus contents. 4. The order of PCP adsorption in the exchangeable base-treated soils was H^+-exchanged soil>$K^+-soil$>$Na^+-soil$>$Ca^{++}-soil$>Mg^{++}-soil. 5. Langmuir's and Freundlich's adsorption isotherms were applicable to the PCP adsorption, and thereby were able to be calculated maximum adsortion amounts of PCP, bond energy, and the depths of adsorption layers. 6. Maximum adsorbed amounts of PCP were 212.14 mg/100gr in Clayey loam, 97.28 to 121.59mg/100gr in Loam, and 32.92 to 91.74mg/100gr in Sandy loam, respectively. 7. The depths of mixed layers of limiting application for fish-toxicity-free treatment were 0.88cm of the Jinchun soil, the shallowest and 4.29 cm of the Naesan-ri Sandy loam, the deepest.

  • PDF

Root Yield and Saponin content in Different soil Texture of Platycodon grandiflorum A.DC. (토성(土性)에 따른 길경(桔梗) 생육(生育) 및 사포닌 함량(含量))

  • Seong, Jae-Duck;Kim, Hyun-Tae;Kim, Geum-Soog;Han, Sang-Ik;Kwack, Yong-Ho
    • Korean Journal of Medicinal Crop Science
    • /
    • v.7 no.4
    • /
    • pp.282-287
    • /
    • 1999
  • This study was conducted to investigate the effects of different soil texture in agronomic characteristics, root yield and quality of baloon flower (Platycodon grandiflorum A. DC.). Three kinds of soil texture, sandy loam, silt loam and clay loam, were tested for two years. Baloon flowers were seeded with 20cm row space and cultivated in the one square meter pot with 0. 6m depth. Fifty plants per pot were remained. In growth characteristics of one-year-old plants, shooting date was not significantly different according to the changes of soil texture. The ratio of stem growth was highest between July and August. In two-years-old plants, it was showed between May and June. Plants grown on clay loam showed the highest growing characteristics than those of other soil textures. Dry root weight cultivated on clay loam was 274kg/10a in one-year-old and 934kg/10a in two-years-old plants. The content of ethanol extracts from root was highest at those of sandy loam as 47.1 % in one-year-old root. The crude saponin content was not different significantly among the three kinds of soil texture.

  • PDF