• Title/Summary/Keyword: Clay Architecture

Search Result 124, Processing Time 0.022 seconds

Evaluation of the Natural Vibration Modes and Structural Strength of WTIV Legs based on Seabed Penetration Depth (해상풍력발전기 설치 선박 레그의 해저면 관입 깊이에 따른 고유 진동 모드와 구조 강도 평가)

  • Myung-Su Yi;Kwang-Cheol Seo;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.127-134
    • /
    • 2024
  • With the growth of offshore wind power generation market, the corresponding installation vessel market is also growing. It is anticipated that approximately 100 installation vessels will be required in the of shore wind power generation market by 2030. With a price range of 300 to 400 billion Korean won per vessel, this represents a high-value market compared to merchant vessels. Particularly, the demand for large installation vessels with a capacity of 11 MW or more is increasing. The rapid growth of the offshore wind power generation market in the Asia-Pacific region, centered around China, has led to several discussions on orders for operational installation vessels in this region. The seabed geology in the Asia-Pacific region is dominated by clay layers with low bearing capacity. Owing to these characteristics, during vessel operations, significant spudcan and leg penetration depths occur as the installation vessel rises and descends above the water surface. In this study, using penetration variables ranging from 3 to 21 m, the unique vibration period, structural safety of the legs, and conductivity safety index were assessed based on penetration depths. As the penetration depth increases, the natural vibration period and the moment length of the leg become shorter, increasing the margin of structural strength. It is safe against overturning moment at all angles of incidence, and the maximum value occurs at 270 degrees. The conditions reviewed through this study can be used as crucial data to determine the operation of the legs according to the penetration depth when developing operating procedures for WTIV in soft soil. In conclusion, accurately determining the safety of the leg structure according to the penetration depth is directly related to the safety of the WTIV.

The Emergence of Wooden Chamber Tombs with Stone Mound and the Changing Nature of Tombs at the Wolseong North Burial Ground of Gyeongju in the Early Silla Phase (신라 전기 적석목곽분의 출현과 경주 월성북고분군의 묘제 전개)

  • Choi, Byung Hyun
    • Korean Journal of Heritage: History & Science
    • /
    • v.49 no.3
    • /
    • pp.154-201
    • /
    • 2016
  • During the Incipient and Early Silla phases, which witnessed the establishment and development of the ancient Silla state, the Wolseong North Burial Ground functioned as not only the central burial ground in the Gyeongju region of the capital of Silla but also as the central burial ground of the whole Silla state. Wolseong North Burial Ground is where transformations in Silla funerary architecture first occurred. As such, an empirical study of the tombs constructed at this burial ground can be regarded as a starting point from which an understanding of the development of the tomb culture of the Silla state may be achieved. This paper therefore aims to examine the changing nature of the tomb culture of the Early Silla phase through the burial data of Wolseong North Burial Ground and the Gyeongju region. Wooden chamber tombs were constructed from the late phase of Saroguk. At Wolseong North Burial Ground, which eventually developed into the central burial ground of the Gyeongju region, wooden chamber tombs embellished with stone packing emerged during the Incipient Silla phase; wooden chamber tombs with stone mounds, on the other hand, first appeared in the Early Silla phase and eventually became established as the central tomb type. A key difference between the wooden chamber tomb embellished with stone packing and the wooden chamber tomb with stone mound is that, in the case of the latter, stones were packed not only around sides of the wooden structure that acted as the burial chamber but also on top of this structure. The addition of a high earthen mound surrounded by protective ring of stones is another distinctive feature of the latter, presenting a contrast to the low mound of the former. During the Early Silla phase, two types of wooden chamber tombs with stone mounds were constructed at Wolseong North Burial Ground: those with burial chambers located above ground and those with subterranean burial chambers. Also constructed during this phase were the wooden chamber tomb embellished with packed stones, the wooden chamber tomb embellished with packed clay, simple earth cut burials, which had been used since the Incipient Silla phase, as well as the stone-lined burials with vertical entrance which first appeared in the Early Silla phase. However, of these different types of burials, it was only the wooden chamber tomb with stone mound that was covered with a 'high mound.' Differentiation between the different tomb types can also be observed in terms of location, type of burial chamber used, construction method, and tomb size. It is therefore possible to surmise that stratification between the different tomb types, which first emerged in the Incipient Silla phase, became intensified during the Early Silla phase.

A Scientific Study of Roof Tiles in Joseon Dynasty from Dongdaemoon Stadium (동대문운동장유적 출토 조선시대 기와의 특성 연구)

  • Chung, Kwang-Yong
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.3
    • /
    • pp.160-173
    • /
    • 2012
  • Roofing tile research conducted in Korea so far is mostly related to studies on roofing tile patterns excavation report on the roof tile klin site in the aspects of archeology architecture and history of art. There have been continuous studies on kiln ground and manufacture techniques of roofing tiles. However it is difficult to find roofing tiles research based on scientific experiments. The research on this paper performs physical and chemical experimental study to understand order, manufacturing techniques and other characteristics of Chosun Dynasty roofing tiles excavated in Dongdaemun stadium. As for physical experimental study water absorption, specific gravity, whole-rock Magnetic susceptibility rate and Differential Thermal Analysis are conducted. As for chemical experimental study, neutron activation analysis(NAA), microstructure observation, X-ray diffractometry(XRD) analysis are conducted. Result of neutron activation analysis and statistical analysis on piece of roof tile 22 samples clearly show that the roofing tile samples are from different time line and places. It also shows different composition when compare average value of rare earth resources per findspots. It means roofing tiles were manufactured from clay mineral from several places. Close inspection using XRD and polarization microscope reveals that main components of roofing tiles are quartz and felspar. Mica and Illite are found partially. XRD analysis shows mullite mineral composition which occurs when roofing tile is calcined around $1000^{\circ}C$. Differential thermal analysis shows gradual exothermic peak near $900^{\circ}C$. Based on these results, it is assumed that roofing tile is made at $900{\sim}1000^{\circ}C$. result of XRD analysis shows mullite were made near $1000^{\circ}C$. in Differential Thermal Analysis shows gradual exothermic peak near $900^{\circ}C$. this results shows that roof tiles were made near 900~1000 near $1000^{\circ}C$ mean value of whole-rock Magnetic susceptibility rate. When performed comparative analysis using whole-rock Magnetic susceptibility rate average value, findspots provided no certain classification to arrange. Nonetheless low whole-rock Magnetic susceptibility rate 0.2~0.78(${\times}103$ SI unit) is found when roofing tile patterns are Pasangmun, Taesangmun, Eosangmun, Kyukjamun, Heongsunmun. Overall absorptivity is 14~21%. It is similar to 14~18% of roofing tile from Chosun Dynasty. There is only 1.4~2.5g/cm3 of roof tile sample specific gravity. The analysis finds no difference in specific gravity by findspots.

A Comparative Study on Application of Material in Traditional Residents of Korea, China and Japan - Focusing on Representative Upper-class House - (한·중·일 전통주거의 재료적용 특성 비교 연구 - 각국 대표 상류주택을 중심으로 -)

  • Kim, Hwi Kyung;Choi, Kyung Ran
    • Korea Science and Art Forum
    • /
    • v.19
    • /
    • pp.293-305
    • /
    • 2015
  • At the same time the unique cultural traits of each country are valued, it has become an essential element to establish the cultural identity of a country. This study is aimed at comparing the residence architectural cultures in East-Asia and thus identifying Korea's own unique traits by determining the application characteristics of traditional architectures of Korea, China and Japan through practical investigation of materials, a basic element of architectural shaping. Literature survey and field study were conducted in parallel for this study, and architectural buildings under investigation included Mucheomdang House in Korea, Prince Gong Mansion in China and Dokyudo Building in Japan. Construction materials in Korea, China and Japan include natural materials such as wood, stone and clay, and artificial materials such as metals, paper, roof tiles, plug and glass. and the buildings were constructed with the combination of these materials. This commonality can be often found in the architectural composition. However, in the interior composition, the choice and application of different materials were clear between three countries, which were shown to be different depending on climates, processing methods and living culture of each country. First of all, since each country selected materials under the influence of its own vegetation and climates, living environment of each country could be seen via its residence. Also, it could be seen that while Korea and Japan show a certain similarity such as the traits of standing-sitting culture and the finish of paper in the interior, China is clearly different. In particular, regarding the material processing, the artificial processing was minimized in Korea, which mainly gave rough and crude feelings while due to the use of straight timbers, the architectural representation with organized and refined feelings was made in Japan. China showed the highest percentage of artificial processing of materials among three countries, which was highly associated with the coloring culture of China. Also, it could be seen that technology related to fine architectural materials such as bricks and glass was greatly advanced in China. Thus, how immaterial elements such as natural characteristics, functionality and aesthetics were applied in relation to residence in Korea, Japan and China could be determined through the comparison of architectural materials.