• Title/Summary/Keyword: Classroom experiments

Search Result 54, Processing Time 0.024 seconds

A Study on Redesign and Utilization of a Convective Circulation Box for Observations of Land and Sea Breezes (해륙풍 원리 이해를 위한 대류상자 재설계와 활용에 관한 연구)

  • Yang, Mi-Seon;Yun, Sung-Hyo
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.246-258
    • /
    • 2010
  • A convective circulation box was redesigned after analyzing reasons why adolescent elementary school students could not derive a convective circulation concept from the convection circulation box experiments. Even though students were in the formal operational period of Piaget, the adolescents felt difficult to understand a concept of the natural phenomena they have never seen before. Thus, we designed a method to help students increase their scientific understandings about the concept through developing a miniature convective circulation box. Findings indicated that an application of redesigned convective circulation box in the classroom experiment significantly increased the students' understanding about the convective circulations of land and sea breezes, and as well as their participation in the activities. In addition, the redesigned convective circulation box motivated students to develop their scientific thinking skills by allowing them to decide where to put visible incenses inside the box and to directly observe the smoke currents circulation formed accordingly. Redesigning and using a convective circulationbox as a miniature of natural phenomenon helps students avoid having misconceptions. The biggest merits of the box are that it is observable in all directions, it provides much clearer convective circulations comparing to the extant box, and it requires low production costs.

Analysis of Argumentation in Middle School Science Classroom Using Argument-Based Inquiry (논의기반 탐구(Argument-Based Inquiry) 과학수업에서 나타나는 중학생들의 논의과정 분석)

  • Lee, Minji;Kwon, Jeongin;Nam, Jeonghee
    • Journal of the Korean Chemical Society
    • /
    • v.59 no.1
    • /
    • pp.78-87
    • /
    • 2015
  • The purpose of this study was to investigate the argumentation of middle school students during the argument-based inquiry. A total of sixty eight 8th grade middle school students participated in this study and they performed six argument-based inquiry programs. Data were collected from two of the latest programs by audio-recording and transcription of each group engaging in argumentation. The study findings showed that; first, the most frequent element of argumentation in the all of stages of the two programs was following order: 'claim' and 'request and response' and 'simple agreement'. The most active argumentation was showed at the designing experiments stage and the most inactive was showed at the generating questions stage. Second, as a result of analyzing the argumentation level for each stage of the argument-based inquiry, a high level of argumentation was shown at the claim and evidence stage, and a low level of argumentation was shown at the generating questions stage in the argumentation structure. As a result of the validity of argumentation, the validity of argumentation was the highest level in the claim and evidence stage.

Effects of Application Hypothesis Verification Learning Model in Biology Experiment Teaching (생물 실험 지도에 있어서 가설 검증 수업모형의 적용 효과)

  • Kim, Kwang-Soo;Chung, Wan-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.4
    • /
    • pp.365-375
    • /
    • 1996
  • Improving of scientific inquiring ability is the major goal of current science curriculum, and the 6th science curriculum. But science educators consider that the existing textbooks and teaching manuals are insufficient to achieve this goal. For science teachers at teaching site to guide students efficiently in research work, development of teaching-learning programs is urgently demanded. Hypothesis Verification Learning Model(HVLM) was applied to classroom situation to improve ability of scientific inquiry in experiment teaching of middle school biology. The effects of the model were analyzed to suggest some approach method to reach the goal of science education in this study. The major results of this study are as following: 1. The students and teachers responded positively on this new learning model. an students were willing to participate in biology experiment and they said that to know what was unknown to them while exchanging ideas and opinions through the discussion, It was hard for teachers to instruct at the first time and it took much time for them to arrange materials ready, but it turned to be easier as time went on. 2. In science process skills, there was no significant difference statistically by new leaning model. Only the formulating a generalization or model showed significant difference statistically between the two groups. 3. For scientific attitude, experimental group did not show significant difference statistically between the two groups, but the experimental group showed statistically more significant positiveness in all areas afterwards than before. 4. In science achievement test, there was significantly higher than the control group. It is also analyzed that they remember the experiments in courses and results they planned and performed by themselves longer than these guided by teachers.

  • PDF

Analysis of Elementary School Teachers' Experiences with Using the Unity Physics Engine to Develop Augmented Reality Science Educational Materials (초등학교 교사의 유니티 물리엔진을 활용한 증강현실 과학교육 자료개발 경험 분석)

  • Kim, Hyunguk
    • Journal of Korean Elementary Science Education
    • /
    • v.43 no.3
    • /
    • pp.385-401
    • /
    • 2024
  • This study presents a step-by-step analysis of the experiences and discussions of five elementary school teachers while developing the Augmented Reality (AR) science educational materials, using the Unity Physics Engine. In the preparation phase to develop the AR materials, the teachers explored the features of the AR technology and decided to create AR materials for experiments related to magnetic fields in the magnetism unit, based on discussions about the unit selection. In addition, they complained about difficulties arising out of the lack of background knowledge about the C# programming language in the preparation phase. During the material development stage, there were difficulties in operating the unfamiliar interface and other functions of the software. However, this was overcome through knowledge sharing and collaborative communication among the teachers. The final materials developed were marker-type AR materials to perform experimental activities by changing the position of the magnet and the compass markers. Based on the developed materials, the teachers discussed their smooth utilization during the classroom activities.

Factors Affecting Learning Methods and Flipped Learning by Flipped Learning (플립러닝이 학습방법과 플립러닝에 영향을 미치는 요인)

  • Yi, Eun-Seon;Lim, Heui-Seok
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.45-52
    • /
    • 2020
  • This study ranked the degree to which flipped learning contributes to each learning area and, in contrast, to quantitatively examine how effectively these learning methods are used in flipped learning, had four-year university computer majors receive flipped learning. Existing flipped learning experiments have proven effectiveness, while there are also negative effects on effectiveness, which has led to a lot of debate. Effective experiments and classes therefore require more research and an accurate understanding of flipped learning. Analysis of the 123 samples recruited shows that flipped learning contributes to learning is in order of self-directing, collaboration, watching videos, and learning by teachers. Regression analysis of the degree to which learning method affects flipped learning effectiveness resulted in order of self-directed learning, lecture videos, and collaborative learning. This shows that flipped learning not only has the greatest influence on self-directed learning, but also self-directed learning has the greatest influence on flipped learning. It can also see that a collaborative learning and the role of video to prior learning tool is important. Through this study, we hope to understand flipped learning correctly and set learning methods and achievement goals. It is necessary to analyze the interaction between flipped learning and subdivided classroom activities.

Science Teachers' Perceptions to the Utilization of Calculator Based Laboratory System with Experimental Kit in Science Experiments (Calculator-Based Laboratory system과 실험 Kit를 이용한 과학실험에 대한 교사들의 인식)

  • Seo, Hae-Ae;Yoon, Ki-Soon;Sohn, Jong-Kyung;Chung, Hwa-Sook;Song, Bang-Ho;Yang, Hong-Jun;Park, Sung-Ho;Kwon, Duck-Kee
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.2
    • /
    • pp.293-304
    • /
    • 1999
  • A Calculator-Based Laboratory (CBL) system was introduced to science teachers and their perceptions to its classroom application was assessed. A CBL survey instrument was responded by 54 middle and high school science teachers who undertook a three-hour workshop of science experiments with CBL system. There were significant differences in teachers perceptions to CBL system among gender, school level, school location, teacher's degree, and years of teaching in terms of learning CBL system, applicability of CBL system for science classrooms, and effects on science achievement. Male teachers showed significantly (p<.05) higher agreement to learning of CBL system and applicability for science classrooms than female teachers. Compared to middle school teachers, high school teachers showed significantly (p<.05) high interests in CBL applicability for science classrooms and perceptions that there will be an increase of science achievement. Teachers with 4-8 years of teaching experience also showed significantly (p<.05) higher interest toward learning CBL system and its applicability. It was concluded that science teachers perceived CBL system as a promising science teaching method in Korean middle and high schools. However, a science teacher inservice training program for CBL system should be developed in consideration of gender, school level, school location, and years of teaching.

  • PDF

Path Selection Strategies and Individual Differences in a Navigation Task (어디에 표지판을 세울 것인가? 길 안내 과제를 통한 개인의 공간인식 및 문제해결에 대한 연구)

  • Lee, Jong-Won;Harm, Kyung-Rim;Yoon, Sae-Ra;Baek, Young-Sun
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.1
    • /
    • pp.144-164
    • /
    • 2010
  • This study aims to reveal path selection strategies and individual differences in a navigation task. Two experiments were presented that studied human route planning performance as well as the cognitive strategies and processes involved. For the outdoor task, university students were asked to select a route based on the instruction, i.e. to find the best route from the campus main gate to the Education Building for conference visitors by locating eight signposts. Results indicate (1) that locations of signposts were selected preferably at decision points where the traveler needs to make a choice and starting/ending points of the navigation task and (2) a variety of route planning strategies considering efficiency goal (e.g., the shortest path), environmental characteristics (e.g., fewest turns), and aesthetic purpose (e.g., most scenic) were used. It is notable that some participants took into account more than one path by locating one or two signposts on an alternative route while others preferred a linear route connecting signposts between the start point and the destination. Prior to the main experiment, the same participants were asked to complete the same task inside the classroom to investigate changes in strategies between two tasks. Participants often tend to place signposts at more regular intervals for the indoor navigation task than the same task conducted outside.

Features of Science Classes in Science Core Schools Identified through Semantic Network Analysis (언어네트워크분석을 통해 본 과학중점학교 과학수업의 특징)

  • Kim, Jinhee;Na, Jiyeon;Song, Jinwoong
    • Journal of The Korean Association For Science Education
    • /
    • v.38 no.4
    • /
    • pp.565-574
    • /
    • 2018
  • The purpose of this study is to investigate the features of science classes of Science Core Schools (SCSs) perceived by students. 654 students from 14 SCSs were surveyed with two open-ended questions on the features of science classes. The students' responses were analyzed with NetMiner 4.5, in terms of the centrality (of betweenness and of degree) analysis and the community analysis. The results of the research are as follows: (1) the science classes of SCSs were perceived by students to be of the environment of free questioning, active participation and communication, caring teacher, more science experiments and advanced contents, and knowledge sharing; (2) science classes in SCSs were perceived to be different from those of ordinary high schools because SCSs provide more opportunities for science-related special courses (like project work, advanced science subjects), extra-curricular activities, inquiry and research activities, school supports, hard-working classroom environment, longer studying hours, R&E and club activities. The students' perceptions of SCS science classes appear to be in line with the characteristics of 'good' science lessons from previous studies. The SCS project itself and the features of SCS science classes would help us to see how we introduce educational innovations into actual schools.

A development and evaluation of new training program for science teacher - focused on computer simulation inquiry experiments in physics - (새로운 과학 교육 프로그램의 개발과 평가 I - 컴퓨터 시뮬레이션을 이용한 물리 탐구 실험 연수를 중심으로 -)

  • Park, Jong-Won;Oh, Hee-Gyun;Kim, Doo-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.19 no.4
    • /
    • pp.653-664
    • /
    • 1999
  • This study was designed to develope an in-service training programme using Interactive $Physics^{TM}$ simulation for science teachers and to evaluate the effect of programme. The purposes of training programme are the improvement of scientific inquiry teaching ability as well as enhancement of the understanding of scientific concepts, inquiry skills, and the computer manipulation skills. The developed programme was implemented four times with 15 hours for each courses. The questionnaire for evaluating the programme after the last course showed that many teachers (1) voluntarily participated in this programme with internal motivation, (2) were satisfied with the level of programme difficulty, professionality of lecturer, and classroom environment, (3) gave positive responses about the achievement of the purposes of this programme, (4) showed strong intention for applying simulation to their school teaching. And future studies were proposed.

  • PDF

Cognitive Effects of Mathematical Pre-experiences on Learning in Elementary School Mathematics (수학적 선행경험이 산수학습에 미치는 인지적 효과)

  • Lee Myong Sook;Jeon Pyung Kook
    • The Mathematical Education
    • /
    • v.31 no.2
    • /
    • pp.93-107
    • /
    • 1992
  • The purpose of this study is to make out teaching-learning method for developing mathematical abilities of the 1st grade children in elementary school by investigating cognitive effects which mathematical pre-experiences given intentionally by teachers have on children's learning mathematics. The research questions for this purpose are as follows: In learning effects through mathematical pre-experiences given intentionally by teachers. 1) is there any differences between children with pre-experiences and children without them in Mathematics Achievement Test\ulcorner 2) is there any differences between children with pre-experiences and children without them in Transfer Test for learning effects\ulcorner For this study, a class with 41 children in H elementary school located in a Myon near Chong-ju was selected as an experimental group and a class with 43 children in G elementary school in the same Myon was selected as a control group. Nonequivalent Control Group Design of Quasi-Experimental Design was applied to this study. To give pre-experiences to the children in experimental group, their classroom was equipped with materials for pre-experiences, so children could always observe the materials and play with them. The materials were a round-clock on the wall, two pairs of scales, fifty dice, some small pebbles, two pairs of weight scales, two rulers on the wall, and various cards for playing games. Pre-experiences were given to the children repeatedly through games and observations during free time in the morning (00:20-09:00) and intervals between periods. There was a pretest for homogeneity of mathematics achievement between the two groups and were Mathematics Achievement Test (30 items) and Transfer Test (25 items) for learning effects as post-tests. The data were collected from the pretest on April 8 (control group), on April 11 (experimental group) and from the Mathematics Achievement Test and Transfer Test on July 15 (experimental group) and on July 16 (control group). T-test was used to analyze if there were any differences in the results of the test. The results of the analysis were as follows: (1) As the result of pretest, there was not a significance difference between the experimental group (M=17.10. SD=7.465) and the control group (M=16.31, SD=6.974) at p<.05 (p=0.632). (2) For the question 1. in the Mathematics Achievement Test, there was a significant difference between the experimental group (M=26.08, SD=4.827) and the control group (M=22.28. SD=5.913) at p<.01 (p=.003). (3) For the question 2. in the Transfer Test for learning effects. there was a significant difference between the experimental group (M=16.41, SD=5.800) and the control group (M=11.84, SD=4.815) at p<001, (p=.000). From the results of the analyses obtained in this study. the following conclusions can be drawn: First, mathematical pre-experiences given by teachers are effective in increasing mathematical achievement and transfer in learning mathematics. Second, games. observations, and experiments given intentionally by teachers can make children's mathematical experiences rich and various, and are effective in adjusting individual differences for the mathematical experiences obtained before they entered elementary schools. Third, it is necessary for teachers to give mathematical pre-experiences with close attention in order to stimulate children's mathematical interests and intellectual curiosity.

  • PDF