• Title/Summary/Keyword: Classification of the Region

Search Result 1,017, Processing Time 0.03 seconds

Change Detection Using Multispectral Satellite Imagery and Panchromatic Satellite Imagery (다중분광 위성영상과 팬크로매틱 위성영상에 의한 변화 검출)

  • Lee, jin-duk;Han, seung-hee;Cho, hyun-go
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2008.05a
    • /
    • pp.897-901
    • /
    • 2008
  • The objective of this study is to conduct land cover classification respectively using Landsat TM data collected on Oct., 1985 and KOMPSAT-1 EOC data collected on Jan., 2000 covering Gumi city, Gyeongbuk Province and to detect urban change by comparing between both land cover maps. Multispectral images of Landsat TM have spatial resolution of 30m are well known as useful data for extracting information related to landcover, vegetation classification, urban growth analysis and so forth. In contrast, as KOMPSAT-1 EOC collects panchromatic images with relatively high spatial resolution of 6.6m. We try to analyze how accurate landcover classification result is able to be derived from the panchromatic images. As the results of the study, the KOMPSAT EOC data with high resolution greater than 4 times showed higher classification degree than Landsat TM data. It was ascertained that the built-up region was extended by three to four times in the last 15 years between 1985 and 2000. In the contrast, it was shown that the forest region was decreased by 15% to 27% and the grass region including agricultural region was decreased by 28% to 45%.

  • PDF

A study on Robust Feature Image for Texture Classification and Detection (텍스쳐 분류 및 검출을 위한 강인한 특징이미지에 관한 연구)

  • Kim, Young-Sub;Ahn, Jong-Young;Kim, Sang-Bum;Hur, Kang-In
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.5
    • /
    • pp.133-138
    • /
    • 2010
  • In this paper, we make up a feature image including spatial properties and statistical properties on image, and format covariance matrices using region variance magnitudes. By using it to texture classification, this paper puts a proposal for tough texture classification way to illumination, noise and rotation. Also we offer a way to minimalize performance time of texture classification using integral image expressing middle image for fast calculation of region sum. To estimate performance evaluation of proposed way, this paper use a Brodatz texture image, and so conduct a noise addition and histogram specification and create rotation image. And then we conduct an experiment and get better performance over 96%.

Detection of Road Lane with Color Classification and Directional Edge Clustering (칼라분류와 방향성 에지의 클러스터링에 의한 차선 검출)

  • Cheong, Cha-Keon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.86-97
    • /
    • 2011
  • This paper presents a novel algorithm to detect more accurate road lane with image sensor-based color classification and directional edge clustering. With treatment of road region and lane as a recognizable color object, the classification of color cues is processed by an iterative optimization of statistical parameters to each color object. These clustered color objects are taken into considerations as initial kernel information for color object detection and recognition. In order to improve the limitation of object classification using the color cues, the directional edge cures within the estimated region of interest in the lane boundary (ROI-LB) are clustered and combined. The results of color classification and directional edge clustering are optimally integrated to obtain the best detection of road lane. The characteristic of the proposed system is to obtain robust result to all real road environments because of using non-parametric approach based only on information of color and edge clustering without a particular mathematical road and lane model. The experimental results to the various real road environments and imaging conditions are presented to evaluate the effectiveness of the proposed method.

A Construction of Fuzzy Model for Data Mining (데이터 마이닝을 위한 퍼지 모델 동정)

  • Kim, Do-Wan;Park, Jin-Bae;Kim, Jung-Chan;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2002.12a
    • /
    • pp.191-194
    • /
    • 2002
  • In this paper, a new GA-based methodology with information granules is suggested for construction of the fuzzy classifier. We deal with the selection of the fuzzy region as well as two major classification problems-the feature selection and the pattern classification. The proposed method consists of three steps: the selection of the fuzzy region, the construction of the fuzzy sets, and the tuning of the fuzzy rules. The genetic algorithms (GAs) are applied to the development of the information granules so as to decide the satisfactory fuzzy regions. Finally, the GAs are also applied to the tuning procedure of the fuzzy rules in terms of the management of the misclassified data (e.g., data with the strange pattern or on the boundaries of the classes). To show the effectiveness of the proposed method, an example-the classification of the Iris data, is provided.

A Robust Fingerprint Classification using SVMs with Adaptive Features (지지벡터기계와 적응적 특징을 이용한 강인한 지문분류)

  • Min, Jun-Ki;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Fingerprint classification is useful to reduce the matching time of a huge fingerprint identification system by categorizing fingerprints into predefined classes according to their global features. Although global features are distributed diversly because of the uniqueness of a fingerprint, previous fingerprint classification methods extract global features non-adaptively from the fixed region for every fingerprint. We propose an novel method that extracts features adaptively for each fingerprint in order to classify various fingerprints effectively. It extracts ridge directional values as feature vectors from the region after searching the feature region by calculating variations of ridge directions, and classifies them using support vector machines. Experimental results with NIST4 database show that we have achieved a classification accuracy of 90.3% for the five-class problem and 93.7% for the four-class problem, and proved the validity of the proposed adaptive method by comparison with non-adaptively extracted feature vectors.

Local Region Spectral Analysis for Performance Enhancement of Dementia Classification (인지증 판별 성능 향상을 위한 스펙트럼 국부 영역 분석 방법)

  • Park, Jun-Qyu;Baek, Seong-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5150-5155
    • /
    • 2011
  • Alzheimer's disease (AD) and vascular dementia (VD) are the most common dementia. In this paper, we proposed a region selection for classification of AD, VD and normal (NOR) based on micro-Raman spectra from platelet. The preprocessing step is a smoothing followed by background elimination to the original spectra. Then we applied the minmax method for normalization. After the inspection of the preprocessed spectra, we found that 725-777, 1504-1592 and 1632-1700 $cm^{-1}$ regions are the most discriminative features in AD, VD and NOR spectra. We applied the feature transformation using PCA (principal component analysis) and NMF (nonnegative matrix factorization). The classification result of MAP(maximum a posteriori probability) involving 327 spectra transformed features using proposed local region showed about 92.8 % true classification average rate.

Rock Type Classification by Multi-band TIR of ASTER

  • Watanabe, Hiroshi;Matsuo, Kazuaki
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1445-1456
    • /
    • 2003
  • The ASTER TIR (thermal infrared radiometer) sensor has 5 spectral bands over 8 to 12 ${\mu}$m region. Rock type classification using the ASTER TIR nighttime data was performed in the Erta Ale range of the Ethiopian Rift Valley. Erta Ale range is the most important axial volcanic chain of the Afar region. The petrographic diversity of lava erupted in this area is very important, ranging from magnesian transitional basalt to rhyolites. We tried to classify the rock types based on the spectral behavior of each volcanic rock types in thermal infrared range and estimated SiO$_{2}$ content with emission data by the ASTER TIR.

  • PDF

Gait Recognition Algorithm Based on Feature Fusion of GEI Dynamic Region and Gabor Wavelets

  • Huang, Jun;Wang, Xiuhui;Wang, Jun
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.892-903
    • /
    • 2018
  • The paper proposes a novel gait recognition algorithm based on feature fusion of gait energy image (GEI) dynamic region and Gabor, which consists of four steps. First, the gait contour images are extracted through the object detection, binarization and morphological process. Secondly, features of GEI at different angles and Gabor features with multiple orientations are extracted from the dynamic part of GEI, respectively. Then averaging method is adopted to fuse features of GEI dynamic region with features of Gabor wavelets on feature layer and the feature space dimension is reduced by an improved Kernel Principal Component Analysis (KPCA). Finally, the vectors of feature fusion are input into the support vector machine (SVM) based on multi classification to realize the classification and recognition of gait. The primary contributions of the paper are: a novel gait recognition algorithm based on based on feature fusion of GEI and Gabor is proposed; an improved KPCA method is used to reduce the feature matrix dimension; a SVM is employed to identify the gait sequences. The experimental results suggest that the proposed algorithm yields over 90% of correct classification rate, which testify that the method can identify better different human gait and get better recognized effect than other existing algorithms.

An Uncertainty Analysis of Topographical Factors in Paddy Field Classification Using a Time-series MODIS (시계열 MODIS 영상을 이용한 논 분류와 지형학적 인자에 따른 불확실성 분석)

  • Yoon, Sung-Han;Choi, Jin-Yong;Yoo, Seung-Hwan;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.67-77
    • /
    • 2007
  • The images of MODerate resolution Imaging Spectroradiometer (MODIS) that provide wider swath and shorter revisit frequency than Land Satellite (Landsat) and Satellite Pour I' Observation de la Terre (SPOT) has been used fer land cover classification with better spatial resolution than National Oceanic and Atmosphere Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR)'s images. Due to the advantages of MODIS, several researches have conducted, however the results for the land cover classification using MODIS images have less accuracy of classification in small areas because of low spatial resolution. In this study, uncertainty of paddy fields classification using MODIS images was conducted in the region of Gyeonggi-do and the relation between this uncertainty of estimating paddy fields and topographical factors was also explained. The accuracy of classified paddy fields was compared with the land cover map of Environmental Geographic Information System (EGIS) in 2001 classified using Landsat images. Uncertainty of paddy fields classification was analyzed about the elevation and slope from the 30m resolution Digital Elevation Model (DEM) provided in EGIS. As a result of paddy classification, user's accuracy was about 41.5% and producer's accuracy was 57.6%. About 59% extracted paddy fields represented over 50 uncertainty in one hundred scale and about 18% extracted paddy fields showed 100 uncertainty. It is considered that several land covers mixed in a MODIS pixel influenced on extracted results and most classified paddy fields were distributed through elevation I, II and slope A region.

Classification and Tracking of Hand Region Using Deformable Template and Condensation (Deformable Template과 Condensation을 이용한 손 영역 분류와 추적)

  • Jeong, Hyeon-Seok;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.8
    • /
    • pp.1477-1481
    • /
    • 2010
  • In this paper, we propose the classification and tracking method of the hand region using deformable template and condensation. To do this, first, we extract the hand region by using the fuzzy color filter and HCbCr color model. Second, we extract the edge of hand by applying the Canny edge algorithm. Third, we find the first template by calculating the conditional probability between the extracted edge and the model edge. If the accurate template of the first object is decided, the condensation algorithm tries to track it. Finally, we demonstrate the effectiveness and feasibility of the proposed method through some experiments.