• 제목/요약/키워드: Classification model

검색결과 4,197건 처리시간 0.03초

딥러닝 기반 실내 디자인 인식 (Deep Learning-based Interior Design Recognition)

  • 이원규;박지훈;이종혁;정희철
    • 대한임베디드공학회논문지
    • /
    • 제19권1호
    • /
    • pp.47-55
    • /
    • 2024
  • We spend a lot of time in indoor space, and the space has a huge impact on our lives. Interior design plays a significant role to make an indoor space attractive and functional. However, it should consider a lot of complex elements such as color, pattern, and material etc. With the increasing demand for interior design, there is a growing need for technologies that analyze these design elements accurately and efficiently. To address this need, this study suggests a deep learning-based design analysis system. The proposed system consists of a semantic segmentation model that classifies spatial components and an image classification model that classifies attributes such as color, pattern, and material from the segmented components. Semantic segmentation model was trained using a dataset of 30000 personal indoor interior images collected for research, and during inference, the model separate the input image pixel into 34 categories. And experiments were conducted with various backbones in order to obtain the optimal performance of the deep learning model for the collected interior dataset. Finally, the model achieved good performance of 89.05% and 0.5768 in terms of accuracy and mean intersection over union (mIoU). In classification part convolutional neural network (CNN) model which has recorded high performance in other image recognition tasks was used. To improve the performance of the classification model we suggests an approach that how to handle data that has data imbalance and vulnerable to light intensity. Using our methods, we achieve satisfactory results in classifying interior design component attributes. In this paper, we propose indoor space design analysis system that automatically analyzes and classifies the attributes of indoor images using a deep learning-based model. This analysis system, used as a core module in the A.I interior recommendation service, can help users pursuing self-interior design to complete their designs more easily and efficiently.

A study on Classification of Insider threat using Markov Chain Model

  • Kim, Dong-Wook;Hong, Sung-Sam;Han, Myung-Mook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1887-1898
    • /
    • 2018
  • In this paper, a method to classify insider threat activity is introduced. The internal threats help detecting anomalous activity in the procedure performed by the user in an organization. When an anomalous value deviating from the overall behavior is displayed, we consider it as an inside threat for classification as an inside intimidator. To solve the situation, Markov Chain Model is employed. The Markov Chain Model shows the next state value through an arbitrary variable affected by the previous event. Similarly, the current activity can also be predicted based on the previous activity for the insider threat activity. A method was studied where the change items for such state are defined by a transition probability, and classified as detection of anomaly of the inside threat through values for a probability variable. We use the properties of the Markov chains to list the behavior of the user over time and to classify which state they belong to. Sequential data sets were generated according to the influence of n occurrences of Markov attribute and classified by machine learning algorithm. In the experiment, only 15% of the Cert: insider threat dataset was applied, and the result was 97% accuracy except for NaiveBayes. As a result of our research, it was confirmed that the Markov Chain Model can classify insider threats and can be fully utilized for user behavior classification.

Classficiation of Bupleuri Radix according to Geographical Origins using Near Infrared Spectroscopy (NIRS) Combined with Supervised Pattern Recognition

  • Lee, Dong Young;Kang, Kyo Bin;Kim, Jina;Kim, Hyo Jin;Sung, Sang Hyun
    • Natural Product Sciences
    • /
    • 제24권3호
    • /
    • pp.164-170
    • /
    • 2018
  • Rapid geographical classification of Bupleuri Radix is important in quality control. In this study, near infrared spectroscopy (NIRS) combined with supervised pattern recognition was attempted to classify Bupleuri Radix according to geographical origins. Three supervised pattern recognitions methods, partial least square discriminant analysis (PLS-DA), quadratic discriminant analysis (QDA) and radial basis function support vector machine (RBF-SVM), were performed to establish the classification models. The QDA and RBF-SVM models were performed based on principal component analysis (PCA). The number of principal components (PCs) was optimized by cross-validation in the model. The results showed that the performance of the QDA model is the optimum among the three models. The optimized QDA model was obtained when 7 PCs were used; the classification rates of the QDA model in the training and test sets are 97.8% and 95.2% respectively. The overall results showed that NIRS combined with supervised pattern recognition could be applied to classify Bupleuri Radix according to geographical origin.

Gaussian Mixture Model 기반 전완 근전도 패턴 분류 알고리즘 (A Gaussian Mixture Model Based Pattern Classification Algorithm of Forearm Electromyogram)

  • 송영록;김서준;정의철;이상민
    • 재활복지공학회논문지
    • /
    • 제5권1호
    • /
    • pp.95-101
    • /
    • 2011
  • 본 논문에서는 의수환자의 일상생활을 고려한 1-자유도 동작을 손을 쥐고 폄으로 정의하고, 두 동작에 대한 근전도 패턴 분류를 위한 가우시안 혼합 모델 기반의 근전도 패턴 분류 알고리즘을 제안한다. 근전도 패턴 분류 알고리즘의 핵심이 되는 근전도 신호의 특징점 추출을 위하여 근전 신호의 진폭 특성을 고려하는 절대차분평균치(DAMV)와 평균절대값(MAV)을 사용한다. 또한 동작에 대한 근전 신호의 진폭 특성을 보다 명확히 구분하기 위하여 D_DAMV와 D_MAV를 제안한다. 본 논문에서는 4명의 성인남성을 대상으로 실험을 실시하였고, 두 동작에 대한 근전도 패턴의 정확한 분류 여부를 확인하였다.

Hybrid Neural Classifier Combined with H-ART2 and F-LVQ for Face Recognition

  • Kim, Do-Hyeon;Cha, Eui-Young;Kim, Kwang-Baek
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1287-1292
    • /
    • 2005
  • This paper presents an effective pattern classification model by designing an artificial neural network based pattern classifiers for face recognition. First, a RGB image inputted from a frame grabber is converted into a HSV image which is similar to the human beings' vision system. Then, the coarse facial region is extracted using the hue(H) and saturation(S) components except intensity(V) component which is sensitive to the environmental illumination. Next, the fine facial region extraction process is performed by matching with the edge and gray based templates. To make a light-invariant and qualified facial image, histogram equalization and intensity compensation processing using illumination plane are performed. The finally extracted and enhanced facial images are used for training the pattern classification models. The proposed H-ART2 model which has the hierarchical ART2 layers and F-LVQ model which is optimized by fuzzy membership make it possible to classify facial patterns by optimizing relations of clusters and searching clustered reference patterns effectively. Experimental results show that the proposed face recognition system is as good as the SVM model which is famous for face recognition field in recognition rate and even better in classification speed. Moreover high recognition rate could be acquired by combining the proposed neural classification models.

  • PDF

Deep Image Annotation and Classification by Fusing Multi-Modal Semantic Topics

  • Chen, YongHeng;Zhang, Fuquan;Zuo, WanLi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권1호
    • /
    • pp.392-412
    • /
    • 2018
  • Due to the semantic gap problem across different modalities, automatically retrieval from multimedia information still faces a main challenge. It is desirable to provide an effective joint model to bridge the gap and organize the relationships between them. In this work, we develop a deep image annotation and classification by fusing multi-modal semantic topics (DAC_mmst) model, which has the capacity for finding visual and non-visual topics by jointly modeling the image and loosely related text for deep image annotation while simultaneously learning and predicting the class label. More specifically, DAC_mmst depends on a non-parametric Bayesian model for estimating the best number of visual topics that can perfectly explain the image. To evaluate the effectiveness of our proposed algorithm, we collect a real-world dataset to conduct various experiments. The experimental results show our proposed DAC_mmst performs favorably in perplexity, image annotation and classification accuracy, comparing to several state-of-the-art methods.

공동주택의 공사정보분류체계를 활용한 적산 자동화 개념 모형 개발 (A Conceptual Model for Automated Cost Estimating Using Work Information Classification System of Apartment House)

  • Lee, Yang Kyu;Park, Hong Tae
    • 한국재난정보학회 논문집
    • /
    • 제10권1호
    • /
    • pp.15-24
    • /
    • 2014
  • 본 연구는 설계 과정의 분해, 시공 과정의 조립, 공사비 적산 등 공사의 계획과 관리에 걸친 모든 공사 관리의 업무를 체계화할 수 있는 공동주택의 공사정보분류체계를 제시하였다. 또한, 본 연구는 이 공사정보분류체계를 작업순서에 따라 관계형 데이터베이스(Data Base)로 구축 방법을 제시하였고, 구축된 데이터베이스를 근거로 적산 자동화 시스템 개념 모형을 구축하였다. 이러한 적산 자동화 시스템 개념 모형은 기존 적산 시스템들의 근본적인 문제점이었던 부적절함을 해소하여 공동주택 건설현장에서 효과적으로 적용가능한 과학적인 적산 시스템으로 활용할 수 있을 것이다.

New Inference for a Multiclass Gaussian Process Classification Model using a Variational Bayesian EM Algorithm and Laplace Approximation

  • Cho, Wanhyun;Kim, Sangkyoon;Park, Soonyoung
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권4호
    • /
    • pp.202-208
    • /
    • 2015
  • In this study, we propose a new inference algorithm for a multiclass Gaussian process classification model using a variational EM framework and the Laplace approximation (LA) technique. This is performed in two steps, called expectation and maximization. First, in the expectation step (E-step), using Bayes' theorem and the LA technique, we derive the approximate posterior distribution of the latent function, indicating the possibility that each observation belongs to a certain class in the Gaussian process classification model. In the maximization step, we compute the maximum likelihood estimators for hyper-parameters of a covariance matrix necessary to define the prior distribution of the latent function by using the posterior distribution derived in the E-step. These steps iteratively repeat until a convergence condition is satisfied. Moreover, we conducted the experiments by using synthetic data and Iris data in order to verify the performance of the proposed algorithm. Experimental results reveal that the proposed algorithm shows good performance on these datasets.

딥 러닝 기반의 악성흑색종 분류를 위한 컴퓨터 보조진단 알고리즘 (A Computer Aided Diagnosis Algorithm for Classification of Malignant Melanoma based on Deep Learning)

  • 임상헌;이명숙
    • 디지털산업정보학회논문지
    • /
    • 제14권4호
    • /
    • pp.69-77
    • /
    • 2018
  • The malignant melanoma accounts for about 1 to 3% of the total malignant tumor in the West, especially in the US, it is a disease that causes more than 9,000 deaths each year. Generally, skin lesions are difficult to detect the features through photography. In this paper, we propose a computer-aided diagnosis algorithm based on deep learning for classification of malignant melanoma and benign skin tumor in RGB channel skin images. The proposed deep learning model configures the tumor lesion segmentation model and a classification model of malignant melanoma. First, U-Net was used to segment a skin lesion area in the dermoscopic image. We could implement algorithms to classify malignant melanoma and benign tumor using skin lesion image and results of expert's labeling in ResNet. The U-Net model obtained a dice similarity coefficient of 83.45% compared with results of expert's labeling. The classification accuracy of malignant melanoma obtained the 83.06%. As the result, it is expected that the proposed artificial intelligence algorithm will utilize as a computer-aided diagnosis algorithm and help to detect malignant melanoma at an early stage.

선박용 밸브의 내부 누설 진단을 위한 음향방출신호의 머신러닝 기법 적용 연구 (Diagnosis of Valve Internal Leakage for Ship Piping System using Acoustic Emission Signal-based Machine Learning Approach)

  • 이정형
    • 해양환경안전학회지
    • /
    • 제28권1호
    • /
    • pp.184-192
    • /
    • 2022
  • 밸브의 내부 누설 현상은 밸브의 내부 부품의 손상에 의해 발생하며 배관 시스템의 사고와 운전정지를 일으키는 주요 요인이다. 본 연구는 버터플라이형 밸브의 내부 누설에 따라 배관계에서 발생하는 음향방출 신호를 이용하여 배관 가동 중 실시간 누설 진단의 가능성을 검토하였다. 이를 위해 밸브의 작동 모드별로 측정한 시간영역의 AE 원시신호를 취득하였으며 이로부터 구축한 데이터셋은 데이터 기반의 인공지능 알고리즘에 적용하여 밸브의 내부 누설 유무를 진단하는 모델을 생성하였다. 누설 유무진단을 분류의 문제로 정의하여 SVM 기반의 머신러닝과 CNN 기반의 딥러닝 분류 알고리즘을 적용하였다. 데이터의 특징 추출에 기반한 SVM 분류 모델의 경우, 이진분류 모델에서 구축된 모델에 따라 83~90%의 정확도를 나타냈으며, 다중 클래스인 경우 분류 정확도가 66%로 감소하였다. 반면, CNN 기반의 다중 클래스 분류 모델의 경우 99.85%의 분류 정확도를 얻을 수 있었다. 결론적으로 밸브 내부 누설 진단을 위한 SVM 분류모델은 다중 클래스의 정확도 향상을 위해 적절한 특징 추출이 필요하며, CNN 기반의 분류모델은 프로세서의 성능 저하만 없다면 누설진단과 밸브 개도 분류에 효율적인 접근방법임을 확인하였다.