• Title/Summary/Keyword: Classification model

Search Result 4,197, Processing Time 0.033 seconds

A New Distributed Parallel Algorithm for Pattern Classification using Neural Network Model

  • Kim, Dae-Su;Baeg, Soon-Cheol
    • ETRI Journal
    • /
    • v.13 no.2
    • /
    • pp.34-41
    • /
    • 1991
  • In this paper, a new distributed parallel algorithm for pattern classification based upon Self-Organizing Neural Network(SONN)[10-12] is developed. This system works without any information about the number of clusters or cluster centers. The SONN model showed good performance for finding classification information, cluster centers, the number of salient clusters and membership information. It took a considerable amount of time in the sequential version if the input data set size is very large. Therefore, design of parallel algorithm is desirous. A new distributed parallel algorithm is developed and experimental results are presented.

  • PDF

A study on classification of weld quality in high tensile TRIP steel welding for automotive using $CO_2$ laser ($CO_2$ 레이저를 이용한 자동차용 고장력 TRIP 강 용접의 용접부 품질 분류에 대한 연구)

  • 박영환;박현성;이세헌
    • Laser Solutions
    • /
    • v.5 no.3
    • /
    • pp.21-30
    • /
    • 2002
  • In automotive industry, the studies about light weight vehicle and improving the productivity have been accomplished. For that, TRIP steel was developed and research for the laser welding process have been performed. In this study, the monitoring system using photodiode was developed for laser welding process of TRIP steel. With measuring light, neural network model for estimating bead width and tensile strength was made and weld quality classification algorithm was formulated with fuzzy inference method.

  • PDF

Vegetation Classification from Time Series NOAA/AVHRR Data

  • Yasuoka, Yoshifumi;Nakagawa, Ai;Kokubu, Keiko;Pahari, Krishna;Sugita, Mikio;Tamura, Masayuki
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.429-432
    • /
    • 1999
  • Vegetation cover classification is examined based on a time series NOAA/AVHRR data. Time series data analysis methods including Fourier transform, Auto-Regressive (AR) model and temporal signature similarity matching are developed to extract phenological features of vegetation from a time series NDVI data from NOAA/AVHRR and to classify vegetation types. In the Fourier transform method, typical three spectral components expressing the phenological features of vegetation are selected for classification, and also in the AR model method AR coefficients are selected. In the temporal signature similarity matching method a new index evaluating the similarity of temporal pattern of the NDVI is introduced for classification.

  • PDF

A Formal Presentation of the Extensional Object Model (외연적 객체모델의 정형화)

  • Jeong, Cheol-Yong
    • Asia pacific journal of information systems
    • /
    • v.5 no.2
    • /
    • pp.143-176
    • /
    • 1995
  • We present an overview of the Extensional Object Model (ExOM) and describe in detail the learning and classification components which integrate concepts from machine learning and object-oriented databases. The ExOM emphasizes flexibility in information acquisition, learning, and classification which are useful to support tasks such as diagnosis, planning, design, and database mining. As a vehicle to integrate machine learning and databases, the ExOM supports a broad range of learning and classification methods and integrates the learning and classification components with traditional database functions. To ensure the integrity of ExOM databases, a subsumption testing rule is developed that encompasses categories defined by type expressions as well as concept definitions generated by machine learning algorithms. A prototype of the learning and classification components of the ExOM is implemented in Smalltalk/V Windows.

  • PDF

Comparison of Classification Rate Between BP and ANFIS with FCM Clustering Method on Off-line PD Model of Stator Coil

  • Park Seong-Hee;Lim Kee-Joe;Kang Seong-Hwa;Seo Jeong-Min;Kim Young-Geun
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.5C no.3
    • /
    • pp.138-142
    • /
    • 2005
  • In this paper, we compared recognition rates between NN(neural networks) and clustering method as a scheme of off-line PD(partial discharge) diagnosis which occurs at the stator coil of traction motor. To acquire PD data, three defective models are made. PD data for classification were acquired from PD detector. And then statistical distributions are calculated to classify model discharge sources. These statistical distributions were applied as input data of two classification tools, BP(Back propagation algorithm) and ANFIS(adaptive network based fuzzy inference system) pre-processed FCM(fuzzy c-means) clustering method. So, classification rate of BP were somewhat higher than ANFIS. But other items of ANFIS were better than BP; learning time, parameter number, simplicity of algorithm.

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

Medical Image Classification using Pre-trained Convolutional Neural Networks and Support Vector Machine

  • Ahmed, Ali
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.1-6
    • /
    • 2021
  • Recently, pre-trained convolutional neural network CNNs have been widely used and applied for medical image classification. These models can utilised in three different ways, for feature extraction, to use the architecture of the pre-trained model and to train some layers while freezing others. In this study, the ResNet18 pre-trained CNNs model is used for feature extraction, followed by the support vector machine for multiple classes to classify medical images from multi-classes, which is used as the main classifier. Our proposed classification method was implemented on Kvasir and PH2 medical image datasets. The overall accuracy was 93.38% and 91.67% for Kvasir and PH2 datasets, respectively. The classification results and performance of our proposed method outperformed some of the related similar methods in this area of study.

Image Classification based on Few-shot Learning (Few-shot 학습 기반 이미지 분류)

  • Shin, Seong-Yoon;Kang, Oh-Hyung;Kim, Hyung-Jin;Jang, Dai-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.332-333
    • /
    • 2021
  • In this paper, we propose a new image classification method based on several trainings, which is mainly used to solve model overfitting and non-convergence in image classification tasks of small data sets and to improve classification accuracy.

  • PDF

Convolution Neural Network Based Auto Classification Model Using Endoscopic Images of Gastric Cancer and Gastric Ulcer (내시경의 위암과 위궤양 영상을 이용한 합성곱 신경망 기반의 자동 분류 모델)

  • Park, Ye Rang;Kim, Young Jae;Chung, Jun-Won;Kim, Kwang Gi
    • Journal of Biomedical Engineering Research
    • /
    • v.41 no.2
    • /
    • pp.101-106
    • /
    • 2020
  • Although benign gastric ulcers do not develop into gastric cancer, they are similar to early gastric cancer and difficult to distinguish. This may lead to misconsider early gastric cancer as gastric ulcer while diagnosing. Since gastric cancer does not have any special symptoms until discovered, it is important to detect gastric ulcers by early gastroscopy to prevent the gastric cancer. Therefore, we developed a Convolution Neural Network (CNN) model that can be helpful for endoscopy. 3,015 images of gastroscopy of patients undergoing endoscopy at Gachon University Gil Hospital were used in this study. Using ResNet-50, three models were developed to classify normal and gastric ulcers, normal and gastric cancer, and gastric ulcer and gastric cancer. We applied the data augmentation technique to increase the number of training data and examined the effect on accuracy by varying the multiples. The accuracy of each model with the highest performance are as follows. The accuracy of normal and gastric ulcer classification model was 95.11% when the data were increased 15 times, the accuracy of normal and gastric cancer classification model was 98.28% when 15 times increased likewise, and 5 times increased data in gastric ulcer and gastric cancer classification model yielded 87.89%. We will collect additional specific shape of gastric ulcer and cancer data and will apply various image processing techniques for visual enhancement. Models that classify normal and lesion, which showed relatively high accuracy, will be re-learned through optimal parameter search.

Improving an Ensemble Model Using Instance Selection Method (사례 선택 기법을 활용한 앙상블 모형의 성능 개선)

  • Min, Sung-Hwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.1
    • /
    • pp.105-115
    • /
    • 2016
  • Ensemble classification involves combining individually trained classifiers to yield more accurate prediction, compared with individual models. Ensemble techniques are very useful for improving the generalization ability of classifiers. The random subspace ensemble technique is a simple but effective method for constructing ensemble classifiers; it involves randomly drawing some of the features from each classifier in the ensemble. The instance selection technique involves selecting critical instances while deleting and removing irrelevant and noisy instances from the original dataset. The instance selection and random subspace methods are both well known in the field of data mining and have proven to be very effective in many applications. However, few studies have focused on integrating the instance selection and random subspace methods. Therefore, this study proposed a new hybrid ensemble model that integrates instance selection and random subspace techniques using genetic algorithms (GAs) to improve the performance of a random subspace ensemble model. GAs are used to select optimal (or near optimal) instances, which are used as input data for the random subspace ensemble model. The proposed model was applied to both Kaggle credit data and corporate credit data, and the results were compared with those of other models to investigate performance in terms of classification accuracy, levels of diversity, and average classification rates of base classifiers in the ensemble. The experimental results demonstrated that the proposed model outperformed other models including the single model, the instance selection model, and the original random subspace ensemble model.