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A Formal Presentation of the Extensional Object Model

We present an overview of the Extensional Object Model (ExOM) and describe in detall the learn-
ing and classification components which integrate concepts from machine learning and object-ori-
ented databases. The ExOM emphasizes flexibility in information acquisition, learning, and classifi-
cation which are useful to support tasks such as diagnosis, planning, design, and database mining.
As a vehicle to integrate machine learning and databases, the ExOM supports a broad range of
learning and classification methods and integrates the learning and classification components with
traditional database functions. To ensure the integrity of ExOM databases, a subsumption testing
rule is developed that encompasses categories defined by type expressions as well as concept
definitions generated by machine learning algorithms. A prototype of the learning and classification

components of the ExOM is implemented in Smalltalk/V Windows.
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I. Introduction

In recent years organizational comput-
ing has received a great deal of attention
from both computer scientists and
organizational researchers because of the
increasing strategic importance of informa-
tion technology in an organization’s suc-
cess. The nature of o rganizational tasks is
to cope with conflicting, inconsistent, and
partial information to generate sound, rele-
vant, and reliable information to support
decision making and action. Daft and
Weick [DW84] proposed a model of orga-
nizations as interpretation systems to cope
with the demands of organizational tasks.
In their model, an organization scans the
environment, interprets scanned data, exe-
cutes actions, and learns from the feed-
back of actions. Scanning is the process of
monitoring the environment to collect data
either through formal data collection sys-
tems or personal contacts. Interpretation
gives meaning to data by allowing members
to develop shared understanding of their en-
vironment. Organizational learning is the
process by which knowledge of action—out-
come relationships between the organtza-
tion and its environment is obtained.

From a computational perspective, work

in machine learning, knowledge discovery,
active databases, and data visualization
addresses capabilities envisioned in Daft
and Weick’s model. The motivation for
computer supported interpretation is infor-
mation overload, complexity of mnterpreta-
tion, and volatile organizational memory.
As database management systems and
electronic data intérchange have become
popular, organizations receive enormous a-
mounts  of computer-readable  data
through inter and intra organizational
computer systems. It has been remarked
that computers have delivered a flood of
data rather than a mountain of wisdom.
Accurate and timely interpretation of this
torrent of data is rather knowledge inten-
sive and complex. There are many compet-
ing approaches to interpretation of which
the knowledge is often dispersed through-
out an organization. Organizational inter-
pretations may be recorded in many forms
including documents, procedure books,
files, and informally through shared be-
liefs. Storing interpretations and the under-
lying data within the same database

system can imprcve the retention of inter-

pretations especially with regards to per-
sonnel turnover and time.
Traditional object-oriented data models

have several limitations as a formalism for



computer supported interpretation sys-
tems. The traditional models are rather in-
flexible for information acquisition as they
emphasize efficiency, uniformity, encapsu-
lation, and reusability by assuming a most-
ly complete model of the world. They re-
quire a tight coupling between class and
objects as the definition of a class must be
pre-defined before its member objects can
be stored. The instances of a class must be
uniform except for the presence of null
values and limited forms of exceptions.
The traditional models also leave classifica-
tion of objects as a burden of the user. Fre-
quently the user decides class membership
perhaps guided by integrity constraints. If
the database system supports triggers and
deductive reasoning, the designer can de-
fine rules to determine class membership.
The role of learning to determine concept
definitions and object clusterings, and the
role of classification to interpret concept
definitions is outside the scope of most
active database systems.

We have designed the ExOM as an un-
derlying formalism for computer supported
interpretation systems. The ExOM is a de-
parture from traditional object—oriented
models because it emphasizes individual
objects rather than classes. Thus, it may

be considered an object-bused rather than
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class-based approach [Wegn90]. The
ExOM supports incomplete, imprecise, and
incremental information acquisition
through feasible values, strict and non—
strict categories, and separation of object
definition from classification. Besides flexi-
bility in information acquisition, the ExOM
also features both deductive and inductive
reasoning. From our earlier experience
with the deductive, object—oriented lan-
guage, Semlog [SJW 91], deductive reason-
ing s alone not sufficient to support inter-
pretation of business events. Thus, a major
goal of our research has been to support a
broad range of inductive reasoning styles
within the ExOM.

In this paper, we describe in detail the
learning and classification components of
the ExOM. By learning, we mean generat-
ing concept definitions and possibly deter-
mining object groupings or clusterings for
a set of objects. This definition encompass-
es both unsupervised learning which deter-
mines object clusters and concept defini-
tions as well as supervised learning which
only generates concept definitions. By clas-
sification, we mean testing an object for
membership in a given category by apply-
ing known concept definitions. Classifica-
tion involves searching concept definitions

in an efficient manner and matching a
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concept definition to the values of an ob-
ject.

The main contributions highlighted in
this paper are support for a broad range of
learning and classification approaches and
the integration of learning and classifica-
tion components with traditional database
functions. The ExOM supports the learning
dimensions of example acquisition(incre-
mental or batch), category space(flat or
hierarchical), and supervision(supervised
or unsupervised) as well as teacher sup-
plied concept definitions. The ExOM sup-
ports several kinds of classification func-
tions and concept definitions including
type expressions with subsumption reason-
ing, decision trees, weighted feature re-
cords with inexact matching, and simple
rules. The learning and classification com-
ponents are integrated into traditional da-
tabase functions through operators that in-
terpret concept definitions, specify a set of
categories for learning and classification,
determine a set of objects from which to
apply a learning algorithm, conduct a
learning experiment, explain membership
of an object in a category, and explain the
concept definition, classification function,
and learning algorithim of a category. In
addition, the ExOM provides standard in-

terfaces for introducing new learning and

classification functions as well as new
kinds of concept definitions. Because con-
sistency of ExOM databases is still impor-
tant, a subsumption testing rule is given
that can be used to augment a taxonomic
reasoner. We describe a prototype imple-
mentation of the ExOM in which most fea-
tures described in this paper are included.

II. Overview of the ExOM
1. Schema Definition

In designing an ExOM database, we first
define terms used in objects and catego-
ries. Type names and associated con-
straints should be defined before use. The
fundamental part of an ExOM schema is
the representation of categories and their
relationships. Objects are asserted and or-
ganized into categories. We use the term
category instead of class to emphasize the
broader role of classification and learning
in the ExOM than traditional object-orient-
ed models.

{Figure 1) 22shows the schema of an
imaginary bank database. Structured-cate-
gories are similar to classes in traditional
object-oriented databases in that members
of a structured category are homogeneous

in their attributes. The numbers in paren-



theses following an attribute’s type name

are the minimum and maximum

cardinality, respectively.

STRUCTURED CATEGORY Customer
Parents TOP
[CID: :String(1,1), name::String(1,1),
address: :String(1,1), phone: :String]]
Key CID

STRUCTURED CATEGORY Household

Parents Customer

[marrital status::Marriage type, chil-
dren: :Set of Children,

vocation: : {‘Professor’, ‘Doctor’, ‘Oth-
ers’}, position: ; String,

annual income: :Dollars, property: :Dol-
lars, deposits:Set of Deposit(1,n),

loans: :Set of Loan(0,n), contribution:
{‘High’, ‘Medium’, ‘Low’},

relationship duration::{‘Long’,'Medium’,
‘Short’} ]

STRUCTURED CATEGORY Account
Parent TOP
[acct ID::String, product-name: :Prod-
uct(1,1),
1),
opening_date: :Date(1,1), balance: :Dol-
lars(1,1)]

customer ID: :Customer(1,
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STRUCTURED CATEGORY Credit Ap-

plied

Parents Top

[application no::Integer(1,1), applica-
tion date::Date(1,1),

applicant: :Customer(1,1), product

name: : Product(1,1),

linked accounts: :Account(0,1),credit_
line: :Dollars,collateral: :Collateral
type,

collateral value: :Dollars]

Key application no

Note that as a subcategory of Customer,
Household inherits its attributes. Credit
Applied represents applications for credits
or loans of several kinds. It includes loan
or credit product name, accounts related
to this application, the amount requested,
and collateral information. Each applica-
tion is evaluated for its approval or rejec-
tion and further categorized into Credit_
Approved or Credit Rejected. In the
ExOM, the type expression of a structured
category(i.e.,, the attributes and res-
trictions) serves as a both necessary and
sufficient condition: of membership.

The ExOM also supports unstructured
categories which provide more flexibility
than structured categories. Unstructured

categories have a concept definition in var-
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Figure 1. Example Bank DB Schema

ious forms such as weighted feature re-
cords, rules, and decision trees. In continu-
ing with our bank database example, we
define two unstructured categories includ-
ing their methods of membership testing.
These two categories serve as predictors of
credit application likely to be accepted and
rejected, respectively. The membership
conditions of Credit Accepted contain two
weighted feature records where a weight
is enclosed in parentheses following an at-
tribute—value pair. The first specifies an
application involving product, contribution
to the bank, relationship duration, and
credit line while the second involves prod-
uct, vocation, and credit line. The weight-
ed feature records were specified by the
database designer. Membership testing is
performed using "WeightedFeatureTest’ as
specified.

UNSTRUCTURED CATEGORY Credit_
Accepted
Parents Credit Applied
[ product.name="‘savings loan’(1.0),
applicant.contribution=‘High’(1.0),
applicant.relationship duration=
‘Long’(0.8)
credit_line< = $ 10,000(0.75) ]
[ product.name="‘savings loan’(1.0),
applicant.vocation=‘Professor’(0.8)
credit_line< = $5,000(0.75) ]
Classification By WeightedFeatureTest

UNSTRUCTURED CATEGORY Credit_
Rejected
. Parents Credit_Applied
[ product.name="‘savings loan’(1.0),
applicant.vocation=‘Others’(0.8),
applicant.annual income < = § 20,000

(0.9)]



Classification By Weighted Feature
Test

In order to use a learning algorithm, cat-
egories are grouped into category sets. A
category set is defined by specifying the
member categories, learning algorithm,
and classification function. For
compatibility, the learning algorithm and
classification function must use the same
kind of concept definition. The definition
of a category set depends on the kind of
learning algorithm. If the learning algo-
rithm is supervised, the member categories
must be defined before the learning algo-
rithm is executed. If the learning algorithm
is unsupervised, the member categories are
determined by the learning algorithm and
not specified directly. The following exam-

ple revises the concept definitions of Credit

Accepted and Credit Rejected by learning
through asserted instances in each catego-
ry. The category set Application Status in-
cludes the categories Credit Accepted and
Credit Rejected.

CATEGORY SET Application_Status
Root Credit Applied
Contains [Credit Accepted, Credit Re-
jected ]
Classification By WeightedFeatureTest
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Learning Through InstanceAlgorithm1

2. Information Acquisition

ExOM objects are described by their cat-
egory memberships, attributes, and values.
All ExOM objects belong to at least one
category, called the TOP category. There-
fore, if an object is not given any category
specification, it is interpreted as being a
member of TOP. Membership in more spe-
cific categories is subject to satisfaction of
the associated feature type expressions
and concept definitions. If a user indicates
a more specific category of an object, the
object is inserted as a member of that cate-
gory if the concept definition can be satis-
fied. In the following example, an object
Cust2 is asserted as a member of House-
hold with values for the indicated attri-

butes.

INSERT Cust2 In Household Satisfies
[CID:= ‘581219-1234567,
‘Hong Gil Dong’, address: =‘Seoul’,

children:

name. =

marrital status: = {‘married’,
=childl, child2}, vocation:="'Profes-

sor’]

If the precise value of an attribute is not

known, a feasible value expression may be
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used. The ExOM provides three kinds of
feasible value expressions. range, enumer-
ation, and cardiality. The meaning of a
feasible value expression is that the true
value is an element of the values denoted
by the feasible value expression. Range ex-
pressions constrain the feasible values of
an unknown numerical value. Enumera-
tion expressions constrain the values of an
unknown discrete value. Cardinality ex-
pressions set bounds on the number of ele-
ments of a unknown set value. In the fol-
lowing example, a customer is defined
with a mixture of actual values denoted by
the ‘:=" symbol and feasible values denot-
ed by the ‘: ~’ symbol.

INSERT Cust3 In Customer Satisfies
[CID: =*650105-7654321",
‘Kim Young’, address: == ‘Seoul’,
annual_income: ~Range[ $ 10,000.. $ 20,
000], contribution:~  {‘Medium’,
‘Low’}]

name: =

Upon the insertion of an object, the
ExOM begin to find all categories the ob-

ject belongs to as follows:

LET ctg_tree:CategoryTree IN
IF object category is not specified
THEN object_category =TOP

ctg_tree.parents=object_category
ctg tree.children=empty
IF subcategories of object category exist
THEN
For each subcategory of object cate-
gory
Append(Classify(object,
gory), ctg_tree.children)
RETURN ctg_tree
function Classify(object, category)=
LET ctg_tree:CategoryTree IN
IF Member(objt;ct, category) THEN
ctg tree.parents=category ’

subcate-

ctg_tree.children=empty
IF subcategories of category exist
THEN
For each subcategory of category
Append(Classify(object, subcate-
gory), ctg_tree.children)
RETURN ctg tree
ELSE RETURN empty

X The result of this object classification
process is a category tree, the uppermost

parents of which is the category asserted

by users. The category tree of an object is

considered an interpretation for the object
in the context of a given schema defini-

tions.



3. Queries and Operators

The ExOM supports conventional quer-
ies as well as operators for learning and
classification. Queries consist of a qualifi-
cation with the usual relational operators
and Boolean connectives as demonstrated

in the following examples.

RETRIEVE name From Customer Satisfies
[address="‘Seoul’,

$ 100,000,
contribution Satisfies {‘High’, ‘Medi-

um’}]

annual income> =

Queries can also reference feasible val-
ues. Terms involving feasible values can
be evaluated as satisfying or possibly satis-
fying. The latter are evaluated as true if
there exists an interpretation saﬁsfying
the term. Syntactically, possibly satisfying
terms are marked with a question mark as

shown in the following example.

RETRIEVE applicant.name From Credit
Applied Satisfies
[product name="savings loan’ AND ap-
plicant.property >? $ 1,000,000]

Other operators support membership

testing of an objeci in a category and ex-
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planation about why(or why not) an ob-
ject is a member of a category. As previ-
ously mentioned, when an object is insert-
ed, category membership is tested by inter-
preting the object in the context of concept
definitions. The user is notified of the cate-
gory tree as the result of all possible classi-
fications. If the user is more concerned
about a specific category, he or she may
ask for explanation about that classifica-

tion.

INSERT credit_application 202 In Credit
Applied Satisfies
[application no:= 202,
date: = 07/30/95,
applicant: =Cust2,

apphcation

product name :=
‘savings loan’,

linked accounts:=S8aving58375, credit
line: = $ 10,000]

EXPLAIN credit_application 202 InCredit
Accepted

The result of this operation is an expla-

nation tailored to the concept definition of

Credit_Accepted. Since the concept. defini-

tion is a list of weighted feature records,
the explanation provides the degree of
match about each attribute value as fol-

lows:
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credii_application_ZOZ :Credit_Accepted

Exemplar attributes Values
product name savings loan 1.0
Professor 0.8

$ 5,000 0.75

applicant.vocation
credit_line

Importance

credit application 202 Similarity
savings loan 1.0
Professor 1.0
$ 10,000 0.2

—>Similarity 0.76 is above the match threshold of .66

To learn inductively about a category, a
user defines a data set, invokes a learning
algorithm using the data set, and possibly
tests the accuracy of the resulting concept
definitions. In addition, a simulation experi-
ment can be performed by repeating the
following sequence:l) randomly split the
data object set into a training and test set,
2) learn from the training set, and 3) test
the learned concept definitions with the
test set. For example, a data set is speci-
fied for the Example category set using a
maximum- of 200 randomly selected in-
stances that satisfy the target query. The
second operation(LEARN) invokes the
learner with a randomly selected 60% of
Example_data for learning and the remain-
ing for evaluating the learned concept defi-

nition(a decision tree).

DATASET Example-Data For Example
category set

Instances:

RETRIEVE atfribute list FROM Exam-
ple_category set
Method : Random

Maximum Size: 200

LEARN Example category set With Ex-
ample Data Training % :60

. Formal Definitions of thé
ExOM

We present the details of the learning
and classification components of the
ExOM which were informally described in
the previous section. We begin with formal
definitions underlying ExOM databases fol-
lowed by definitions of classifiers and

learners.
1. Categories
As in other object oriented models,

ExOM categories provide convenient parti-

tioning of objects for storage and retrieval.



In additivon, ExOM categories contain con-
cept definitions generated by learning algo-
rithms and used by classification functions.
In this subsection, we formally define cate-
gories and related aspects beginning with
ExOM databases.

Definition 1:An ExOM database is a
tuple (O,C,CL,L,M) where
O is a set of domain objects,
C is a set of categories,
CL is a set of classifiers(Section 2),
L is a set of learners(Section 3), and
M::2°>CL XL assigns a classifier and
learner pair to a subset of catego-
ries where 2° is the powerset(set of

all subsets) of category identifiers.

Objects are pairs consisting of an identi-
fier and a feature value. A feature value
1s an association of labels to values. For-
mally, ExOM values are drawn from the

recursive domain V.

Definition 2:V=B,UB,U--UB,UOpU
FVUS where
By, B,, -+, B, are base types,
Ou is the set of object identifiers,
FV is the set of feature values(finite
mappings from the set of labels(A) to

values)
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FV=A-V={frve A—-|{acA]| fv(a)
€V} is finite}
S is the set.of set values where a set S;

= {vly v?,"',} With v,EV

A type is a set of values drawn from V.
The ExOM supports type expressions
formed from the base types, range types
defined over a base type with an interval
specification, enumerated types defined
over a base type with a value specifica-
tion, set types defined with a minimum
and maximum cardinality, feature type ex-
pressions defined as an association of la-
bels to type expressions, and ExOM cate-
gory names. The use of a category name
implicitly defines a feature type because
the denotation of a category includes a
feature value. Other type constructors
such as function types, lists, and labeled
unions can be included but are not dis-
cussed here for brevity.

Formally, types are defined as expres-
sions that denote a subset of V. Denotation
of a type expression r with environment 7
is defined by D | r | » where DETE' X Env
—2V is the semantic function for type ex-
bressions(TE) and 7€T,—2" is an envi-
ronment, a mapping of type identifiers(Tp)

to subsets of V.
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Definition 3: Denotation of a type expres-
sion is as follows:
' D\ k; | =B: where k; is a type constant
(a base type).
D E(v, v~ 0) H7={v), v5-, | 3B
vs, U, 1.} SB))}
where E(v,, v,--+,v,)is an enumerated
type with value set {v,, v.2,-+-, v,}
D} RG(A, v) | »={r;| 3Bi(r; A, vEB,
A (T2 DN (1<) A(ALS v))}
where RG(A,v) is a range type with
minimum({ ) and maximum(v) values
DY [ a8 T =N{foEFV | fo(a
DED] ;| }
where [+, a;::0,--] is a feature type
D | ST(A, v, 8.) | »=S, such that S;cD |
G A7 ACIS I 20)IA(|S ] <)
where ST(8, v, @) is a set type with
minimum(A) and maximum (v)
cardinalities
DY Cilfr={(0i fv)| 0. EC.ONfvED]
C.ft | »} where
C: is a category name, C..0S0 is the set
of object identifiers of C,, and
C..ft is the feature type expression of C..

Objects are organized into categories
which define conditions for object member-
ship and possibly an interpretation func-

tion to classify objects. Formally,

Definition 4:an ExOM category is a
tuple (Cis P, cd,, cl, ) where
Ciu Is a category identifier,
P 1s the set of parents categories,
cd/€ CD is a concept definition of kind },
cleCL is an optional classifier compati-
ble with cd; and
leL is an optional learner compatible
with cd;

Most categories are defined \ﬁth only
the first three components. A concept defi-
nition is a structure that is specified by a
designer(or sometimes generated by a
learner) and mnterpreted by a classifier.
Because our aim is to support a broad
range of learners and classifiers, we do not
limit the ExOM to a single kind of concept
definition. However, since there are many
possible kinds of structures, we limit our

focus to those which are explainable and

‘can be generated by a machine learning al-

gorithm. Note that we do not consider a
concept definition to be a function because
we want the flexibility of having multiple
membership functions for a given kind of
concept defimtion. Currently, we deal with
four of the most popular structures. fea-
ture types, weighted feature values, rules,
and decision trees. Formally, the set of

concept definitions CD is defined below.



Jefinition 5: CD=FT +WFVset+ RLset+
JT where
FT=A—TE is the domain of feature
types
WEVset=2"" is the powerset of weight-
ed feature values where
WFV =(A—V xW) XC is the domain
of weighted feature values where
W is a real number [0..1] indicat-
ing the importance of the feature.
RLset=2" is the powerset of rules
where
rl,& RLAtl;=(lhs,rhs,st) where
lhs(left hand side) is a set of triples
(label, relop, scal-expr) where
relop is a relational operator and
scal-expr is a scalar value, set of
scalar values, or pair of scalar
values
rhs(right hand side) is a category
identifier or pair (label,value),
and st is a real number [0..1] in-
dicating the strength of the rule.
DT 1s the set of decision trees with dt,E
DT Adt;=(node, {{edge, dt;)})
where node is a label for non-leaf
nodes and a category identifier or
nil for leaf nodes, and edge i1s a
scalar value or-pdir of scalar values

(an interval specification).
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We have limited the complexity of these
structures due to bias in machine learning
algorithms. Because of computational com-
plexity, machine learning algorithms are
limited in the expressiveness of the con-
cepts they can generate. For example,
rules are limited to conjunctions of simple
comparisons because most machine learn-
ing algorithms cannot efficiently search a
space of more complex rules. Another
form of bias is the structure of the input.
Most machine leamfng algorithms use only
scalar values but some use feature values,
set values, and fuzzy values. In Section 3
we describe limitations on the structure of
inputs used by learners. In concept defini-
tions, we do not limit input structure as
we permit a label to be an attribute name
or a dot expression of the form, label,.label,
---label,, where labeli refers to an attribute
of label;,_,. Thus, a concept definition may
reference indirect attributes of an object.

The ExOM has two kinds of categories,
structured and unstructured, correspond-
ing respectively, to closed and open views
of the world. The feature type, required
for structured categories as a concept defi-
nition, is interpreted according to a closed
world view. In this interpretation, only ob-
jects that satisfy the feature type can be

inserted into the category. Formally,
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Definition 6: a structured category {C.s
P, fty=
{obj | Vp.EP(objEp AMa(obj.fv, ft))}
obj.fv denotes the feature value of obj,
M,::FV xFT—{0..1] is & membership

function for feature types

Unstructured categories support an open
world interpretation of feature types to
provide more flexibility but less uniformi-
ty. The concept definition for unstructured
categories can be a feature type, weighted
feature type, rules, or decision trees.
Therefore, the interpretation of a concept
definition is more flexible than for struc-
tured categories, and the concept defini-
tion is usually associated with a graded
membership function(see Section 2). For-

mally,

Definition 7: Unstructured category (Cis
P, cdycly) = |
{obj | VD.EP(objE pA Mufobjfo, cd;
))} where
M,;. . FV XCD—BooleanU[0..1] is the
membership function for concept

definitions

Categories alone(either structured or un-
structured) are not sufficient to integrate

machine learning. Category sets are the

glue between categories and machine
learning. A category set defines a collec-
tion of categories sharing a learning algo-
rithm, classifier, and concept definition.
Formally,

Definition 8: a category set (CS,, Cp C,
cd, cl, 1) where
CS. is a category set identifier,
C, is a parents category, which is the do-
main of the category set,
C is a set of c;attegories,
cd, is a concept definition,
cl;&CL is an optional classifier compati-
ble with e¢d;, and

I, €L is learner compatible with cd.

In a category set, element categories are
usually unstructured, and do not have
additional attributes nor have any descen-
dant categories except for those defined in
the parent category. A category set corre-
sponds to the horizontal dimension of
categorization from studies of human cog-
nition SM81]. The horizontal dimension in-
volves the segmentation of a concept into
a collection of subconcepts that are not dis-
tinguished structurally but rather by dif-
ferences of feature interpretation. Often,
the set of subconcepts does not have clear

cut boundaries. For example, the division



of customers into price seekers and pres-
tige seekers does not involve any new fea-
tures. for the subconcepts but rather dufer-
ent interpretations of the features of cus-
tomers. Because of this intended use, ele-
ment categories in a category set inherit
attributes from the parents category but
may not add or change the inherited set.

2. Classifier

Classifiers use concept definitions to de-
termine (the degree of) category member-
ship. They also explain why a classifica-

tion was a success or failure.

Definition 9: An ExOM classifier is a
tuple (CL;;, M,, k, PM, EX,) where
CL,, 1s a classifier identifier,

M, is a graded membership function of

the form

FV x 2P xTV—2cPx0--11 (individual
category test) or

FVX 2CidXCDXTV_)2CidXCDi><[0.Al] (Cate-

gory set test)
where TV represents threshold values
between 0 and 1.
k indicates the kind of concept defini-
tion,
PM is an optional set of parameters of
the form (label,value)
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used by a membership or explanation
function, and
EX;€EX is an explanation function (see

later discussion).

Graded Membership testing can be per-
formed in two contexts depending on
whether a concept definition is defined for
a category or category set. In the former
case, the concept definition of the category
is tested resulting in a concept definition
identifier and graaed membership value
pair(s), which are above a given threshold
value. Only the category with the highest
grade value can be returned. In the latter
case, a set of concept definitions is tested
resulting in the selected element category
as well as a concept definition identifier
and a graded value. Typically, graded
membership functions are useful for object
descriptions having feasible values or con-
cept definitions having weights because
they provide confidence information that
can be used to select among alternative
categories. A cutoff parameter is used to
decide whether a graded membership
value is large enough to justify member-
ship. The Boolean membership function is

defined as follows:

function Member (obj, CID) =
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IF CID is a member of category set CS
LET CID _list=Empty
For all CIDj in CS
Append(M,(obj.fv, CID;.CDi, tv),
CID List) %{CIDj * CDi *
GradeVal}
IsMember(CID, CID_List)
Else IsEmpty(M,(obj.fv, CID.CDj, tv))
% {CID % CDi * GradeVal}

Various kinds of membership functions
can be defined in the ExOM and this flexi-
bility enables a designer to select among
alternative functions that best match the
characteristics of a category of interest.
For example, in classifying census forms
about industrial and occupation categories,
different membership functions were re-
ported as showing higher
{CMSW92]. In the current implementa-

accuracy

tion, the ExOM supports classifiers, one
for testing feature types of individual cate-
gories, one for testing decision trees for
category sets, and two each for weighted
feature values and rules. For weighted fea-
ture values, the ExOM supports a graded
membership function.

Expert systems provide explanation be-
cause users must. have confidence in rec-
ommended decisions. Confidence can be in-

creased by understanding the chain of rea-

soning used to reach a decision as well as
by an indication of how much certainty
the system has in a decision. Weak expla-
nations that result from either a misunder-
stood chain of reasoning or low certainty
indicate a need for more information gath-
ering by the user.

As a generator of inductive expert
systems, the ExOM provides explanation
about membership decisions. The basic
kind of explanation answers the questions
why or why not. In a rule-based expert
system, the why question is answered by
displaying the chain of rules used to reach
a decision. In the ExOM, there is no chain
of reasoning because of the nature of con-
cept definitions. Rather, explanation func-
tions in the ExOM return the concept defi-
nition (or part of the concept definition if
disjunctive) responsible for the classifica-
tion decision, a detailed explanation of the
success or failure, and a certainty value if
the classifier uses a graded membership

function. Formally,

Definition 10: an explanation function

EX, is of the form

FV x 2¢*>CD, X Stringx[0..1] or
FV x 2€05C,, X CDx % String % [0..1]
where

the output concept definition(CD,) is



drawn from the input set( 2°%)

For disjunctive concept definitions, the
manner in which the responsible element
(CDy) is selected depends on the kind of
concept definition and membership func-
tion. If the concept definition is ordered
such as a decision tree or ordered rules,
the first failing or succeeding path/rule is
selected. If the associated membership
function is graded, the disjunct with the
largest value i1s selected. Otherwise, the
most satisfying disjunct is selected where
the definition of most satisfying is the
responsibility of the explanation function.

Other kinds of explanation functions are
both possible and desirable. A simple varia-
tion is to return information on all catego-
ries tested for membership rather than
only the most satisfying category. This is
especially important if more than one cate-
gory satisfies the concept definition or no

categories satisfy it.

3. Learner

The ExOM supports two kinds of learn-
ing about categories. For the traditional
mode of learning by being told, a database
designer directly provides concept defini-

tions using editcrs and browsers for each
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kind of concept -definition. More interest-
ingly and importantly, the ExOM supports
a wide range of machine learning ap-
proaches. In this section, we describe how
the ExOM supports machine learning ap-
proaches by defining the notions of a
learner and learning operators.
Fundamental to every learning algo-
rithm is the notion of a training set. A
training set [AB92] is a collection of ex-
amples (attribute, value pairs) from which
a learning algorithm makes inductions.
The ExOM recognizes supervised training
sets (Definition 11) in which every exam-
ple is associated with a category label and
unsupervised training sets without catego-
ry labels. We require that supervised train-
ing sets be functions. In addition, we re-
quire that examples in training sets satisfy
constraints of the categories in which they

were drawn.

Definition 11:a supervised training set
(stsi) is defined as
STS=FV—C,,={sts,STS | (fv,=fv)=
(sts,(fv.) =sts,(fv))}

Definition 12: an unsupervised training
set (ustsi) 1s defined as

USTS=2""
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Learning algorithms use training sets to
determine concept definitions, cluster data,
and discover interesting relationships. The
ExOM recognizes three kinds of learning
algorithms depending on the input (super-
vised or unsupervised tramning set) and
output (concept definitions and cluster-
ing). A supervised concept learner (Defini-
tion 13) determines a collection of concept
definitions for a supervised training set. A
clustered concept learner (Definition 14)
determines a grouping for an unsupervised
training set and possibly concept defini-
tions for the groupings. A discovery learn-
er (Definition 15) determines interesting
subsets of an unsupervised traming set as
well as concept definitions for the subsets.
A clustered concept learner differs from a
discovery learner in that the grouping pro-
duced by a clustered concept learner cov-
ers the training set while the grouping pro-
duced by a discovery learner need not
(and typically does not) cover the training
set. In addition, the discovery learner also
generates concept definitions while the
clustered learner need not generate con-
cept defimitions. Practically, discovery
learners have very large training sets be-
cause their purpose is 1o find interesting
patterns in large data sets. Definitions 13

through 15 summarize this discussion.

Definition 13: a supervised concept learner

(scli) is an element of
SCL=STS—2°

Definition 14. a clustered concept learner
(ccli) is an element of
CCL=UTS—2UTSJ (2™ x 2¢P)

Definition 15: a discovery learner(dl;) is

an element of
DL=UTS—(2YTS x 2¢?)

For a specific learning algorithm, its
kind is implicitly defined by a number of
properties that must given before it can be
used. The properties of a learning algo-
rithm include the kind of concept defini-
tion It generates, timing (incremental or
batch), category space (flat or hierarchi-
cal), supervision level (supervised or unsu-
pervised), and attribute scale (nominal
and/or numeric). If the learning approach
is unsupervised, a few other properties are
relevant including category space size
(given and/or learned), disjointness of the
category space (disjoint or overlapping),
and the covering of the category space
(covering or non—covering). Other attri-
butes including attribute cardinality

(scalar or set) and value precision (actual

or fuzzy) are not currently supported in



the ExOM because few machine learning
algorithms use set values and fuzzy val-

ues. Formally,

Definition 16: an ExOM learner is (L, K,
T, CS, SL, AT, SZ, DIS, COV') where
L, is a learner identifier,
K indicates the kind of concept defini-
tion,
T indicates the timing(incremental or
batch),
CS indicates the category space (flat or
hierarchical),
SL indicates the supervision level (super-
vised or unsupervised),
AT indicates attribute types accepted
(nominal, numeric, or both),
SZ i1s an optional size constraint (given
or learned),
DIS is an optional disjointness constraint
(disjoint or overlapping), and
COV is an optional covering constraint

(cover or non—cover).

These properties cover a wide range of
machine learning algorithms. Table 1 de-
picts prominent learning algorithms and
their property values. Abbreviations have
been use” {or .property values, e.g., B
: and I denotes Incremental

means Pl

for the Tiiing property. Note that super-
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vised algorithms (SL=S) do not have val-
ues »for the size (SZ), disjointness (DIS),
and covering (COV') properties.

The ExOM uses these properties to
apply a learning algorithm: when to learn,
what to learn, and what constrains the
learner. The timing property determines
whether the learner depends on the order
of the training instances. If the timing is
incremental, the order is significant and
learning occurs after each example is pre-
sented. Training instances are presented in
the order in which a learning query pro-
duces them. If the timing is batch, the
order is not significant and learning does
not occur until the entire training set is as-
sembled. All learners except for ones that
only cluster produce concept definitions
that are limited to one of the kinds of con-
cept definitions supported by the ExOM.
For unsupervised learners, the ExOM uses
the size(SZ), category space(CS), covering
(COV'), and disjointness(DIS) properties to
determine a learner’s output. For example,
case based reasoners produce a hierarchi-
cal clustering(CS=hierarchical, COV =
cover) which can be disjoint or overlap-
ping, and decide on the number of clusters
(SZ=learned). Knowledge discovery algo-
rithms[ FPM91 ] determine labels for inter-

esting categories but do not cluster objects
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Table 1. Property Values of Selected Learning Algorithms

Learning Algorithm Learner Properties

~ [Reference] K T CS SL AT SZ DIS CoV
ID3[Quin86] DT B F S Nom* -~ - -
ID5R{ Utgo89] DT I F S Nom* - - -
IB3[AKA91] WFV 1 F S All - - -
Unimem[GLF89] WFV | H U All L Non Cov
Cobweb[ GLF89] WFV 1 H U Nom L Dis Cov
CN2[CN89,CB91] Rule B F S Nom - - -
ITRULE[SG92] Rule B F U Nom L Non Non

* Preprocessor transforms numeric into nominal values.

(COV=non—cover). Some learners are
constrained by the kind of attributes in the
training set. If a learner is constrained by
numeric or nominal attributes, a learner
can only be applied with compatible attri-
butes.

In the ExOM, learning is considered a
part of the database design process rather
than a way to dynamically configure a da-
tabase. This philosophy is consistent with
the view that machine learning is a form
of data analysis, complimentary to other
forms such as discriminant analysis, clus-
tering, and analysis of variance. Even with
incremental learning algorithms where the
result of learning is available after each
example, we feel that a-separate learning
phase 1s still the norm because of the na-
the

ture of data analysis. Generally,

results of any data analysis process must
2be carefully considered before putting
those results into practice. Because of this
philosophy, the ExOM supports a learning
phase separated from using the learned
knowledge to classify new objects. In the
learning phase, the ExOM supports execut-
ing a learning algorithm, browsing of the
learned knowledge, capturing test results,
and performing experiments.

The ExOM provides a number of opera-
tors to support the learning process. The
learning process begins with the definition
of a data set for the learning phase using
the DATASET operator.

The user specifies the category set, rele-
vant attributes in the data set, the sam-
pling method(random or systematic), the

sample size, and the data source{external



file, generated data set, or data base query
using existing or new instances). The sam-
pling method determines how the data set
is constructed from qualified instances of
the data source. We assume that there are
a menu of possible random and systematic
sampling methods from which to choose. If
the learner is unsupervised, the data
source is usually a query selecting in-
stances from the root of the category set.
If the learner is supervised, each instance
in the data set must be labeled with its cat-
egory. If the constituent categories in the
category set are already populated, output
labeling can be accomplished by a query
that selects from the constituent catego-
ries. Otherwise, the user can interactively
provide the category labels or an external
data set can be used. As a result of the
DATASET operator, the specifications
about the data set are stored for later use
by the LEARN operator. The LEARN op-
erator imports the data set, invokes the
specified learner, and saves the result of
the learning. The user specifies a data set
identifier, an execution time (time point or
interval), and split percentage. If the
learner 1s unsupervised, the data set is
split into a training set that is used by the
learner and a test set that is used to test

the learned concept definitions. The split
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percentage indicates the percent of the
data set used in the training set. The spht
percentage 1is 100% for unsupervised
learners. The EXPERIMENT operator re-
peatedly executes the LEARN sequence
for a specified number of trials and accu-
mulates the results. It is used only for su-

pervised learners.

-4. Consistency of ExXOM Databases

In strongly-typed object-oriented data-
bases, taxonomic reasoning is used as a
learning and classification method. Taxo-
nomic reasoning provides automatic classi-
fication of a new concept 1n a hierarchy of
concepts and ensures the consistency and
minimality of the conceptual schema. To
ensure efficient subsumption testing (the
key algorithm underlying taxonomic rea-
soning), the expressive power of class de-
scription languages must be severely limit-
ed. Unfortunately, ExOM concept defini-
tions extend beyond the expressive power
of class description languages with effi-
cient taxonomic reasoning. Thus, efficient
taxonomic reasoning cannot be guaranteed
for ExOM concept defimtions leading ei-
ther to potential consistency problems
without taxonomic reasoning or unaccepta-

ble performance of taxonomic reasoning.
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In this section, we present properties of
ExOM databases and demonstrate how to
ensure the consistency of ExOM databases
with limited use of taxonomic reasoning.
We first demonstrate efficient taxonomic
reasoning for ExOM category definitions.
We then present several propositions that
define the relationship between ExOM con-
cept definitions and feature type expres-
sions. Principally, we define conditions
under which a category definition logically
implies another category definition when
both are defined as a combination of a fea-
ture type expression and concept defini-
tion. This result leads to practical
strategieg to ensure the consistency of

ExOM databases which are presented in

the last subsection.

(1) Taxonomic Reasoning for ExOM
Categories

We demonstrate that ExOM category
definitions can be mapped to equivalent ex-
pressions in the language FL* [ BS92]. FL*
i1s an extension of the frame description
language of FL—- [BL84] which was the
first frame description language in which
a sound, complete, and tractable subsump-
tion testing algorithm was found. FL* ex-
tends FL~ with constructs to define mini-

mum and maximum cardinality, disjoin-

tness between primitive categories, and at-

tributes with value sets. The translation

from category definitions into FL* uses

the following rules.

1. AttrName::Type  becomes (ALL
AttrName Type) (NR AttrName 01)

2. AttrName: :ST(min,max,Type) be-
comes (ALL AttrName Type) (NR
AttrName min max)

3. (A1::TEL~-A,::TE,) becomes AND
(A1::TEl,---, A, TE,)

4. E(V,+-V.) becomes Dm where Dm=
Vi, Va)

5. PARENTS C,,---,C, becomes AND(C,,
--,Ca)

In the first two rules, the translation can
be into a role or attribute depending on the
kind of type. If the type is derived from a
basic type (range or enumerated), the
translation is to an FL* attribute defini-
tion (NRa); otherwise, it is to an FL.* role
(NR). The fourth rule translates the enu-
merated type into a unique domain name
and then generates a value domain decla-
ration. Since FL* does not support arbi-
trary enumerated types, we restrict enu-
merated types in the ExOM to disjoint
value sets of a base type. The fifth rule
translates the part of an ExOM category

definition that is not part of a feature type



expression. The ExOM does not support
primitive concepts nor disjointness be-
tween primitive concepts as in FL*
although these features can be added with-
out difficulty. The ExOM emphasizes learn-
ing and classification of concept definitions
that cannot be tractably analyzed for taxo-
nomic reasoning.

Because ExOM category definitions can
be translated into FL* concepts in polyno-
mial time using the above rules, the algo-
rithms and results in [BS92] apply. In par-
ticular, the polynomial time algorithm
SUBS and CLASSIFY in [BS92] can be
used to perform subsumption testing and
automatic classification of a new category
definition, respectively. The ability to use
these algorithms is a straightforward
result which we utilize in the following
subsection. In addition, we rely on the
same definition of subsumption and the de-
rived Theorem in [BS92] that are restated

in Definition 17 for convenience.

Definition 17: P SUBSUMES C iff E | C
| € E| P| where
E is the extension function for FL*,
Theorem: P SUBSUMES C iff SUBS(P,
C)

(2) Relationship of Concept Definitions
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to Feature Type Expressions

In the ExOM, concept definitions aug-
ment traditional class definitions. To en-
sure consistency of an ExOM schema, the
concept definitions must be analyzed by
the SUBS and CLASSIFY algorithms. In
this subsection, we define a well behaved
learning process and demonstrate resulting
properties of learned concept definitions.
These properties underlie the consistency
of ExOM databasesw.

A well behaved learning process uses
background knowledge and a training set
to generate concept definitions for a collec-
tion of categories. Background knowledge
typically consists of a collection of feature
type expressions in concept definitions
from parent categories. Therefore, the
background knowledge is the conjunction
of the feature type expressions including
inherited feature type concept definitions.
Recall that a supervised training set is a
collection of objects where each object con-
sists of a set of values for the predictor at-
tributes and a category identifier repre-
senting one of the categories in which to
learn. The training set is produced by a
data generator where each object generat-
ed adheres to 1its associated background
knowledge. The training set is used by a

supervised concept learning algorithm to
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generate minimally consistent concept defi-
nitions, Formally, a data generator and
minimally consistent concept learner are
defined below.

Definition 18:; DG =2%—-STS where bg,&
BG=obj.fon fle, N\ A fte.
fte: represents the feature type expres-
sion of a parents category k
Therefore, VdgeDG,VbgeBG,Vsts,E
dg(bg) (Satisfies(sts, bg;)) where
I represents the category of training ex-

ample set sts;

Definition 19: A

learner scl,&€STS—2¢® generates mini-

supervised concept

mally consistent concept definitions iff
Vsts&STS, Ved; Escl(sts) (dstsis
sts(Satisfies(cd,, stsi))).

Definitions 18 and 19 restrict the data
generation process and the output of su-
pervised concept learners. Definition 18 is
a simplification of a data generation proc-
ess. An actual data generation process
usually involves either an historical or
hypothetical data set. In the former case,
the objects of the training set are taken di-
rectly from an existing category in a data-
base. In the latter case, hypothetical ob-

jects are defined usually in consultation

with a group of experts. We assume that
adequate care is exercised so that each ob-
ject in the training set satisfies its associat-
ed background knowledge in the form of a
feature expression possibly augmented
with inherited concept definitions from
parent categories. Definition 19 establishes
that concept definitions generated by a
learner need not fully explain the training
set. However, most examples will satisfy
their associated concept definition.

Two things nee;i to be noted. First, in a
well-behaved learning process, a super-
vised concept learner generates concept
definitions that are consistent with the
background knowledge (feature type ex-
pression and inherited concept definitions)
of the category. By Definition 19 each con-
cept definition is satisfied by at least one
object in the training set and by Definition
18, each example object in a training set
satisfies its background knowledge. Thus,
the background knowledge is consistent
with the generated concept definition be-
cause there is at least 1 training object
that satisfies both.

Second, in a well-behaved learning proc-
ess, a supervised concept learner generates
concept definitions that do not necessarily
imply the background knowledge of their

category. A learned concept definition



may oniy include a proper subset of the at-
tributes from a feature type expression.
Because supervised concept learners at-
tempt to generalize their training set. One
major part of generalization is to remove
attributes that do not significantly contrib-
ute towards good classification perform-
ance. Further, supervised concept learners
prefer simple concept definitions (few
terms) to more complex ones, other things
being equal. Therefore, a concept defini-
tion containing a proper subset of the attri-
butes cannot possibly imply a feature type
expression with conditions on all the attri-
butes.

Definitions 18 and 19 along with these
simple relationships are not sufficient to
extend the subsumption test in Definition
17. To establish a subsumption test, there
must be a rule to guarantee consistency
between the learned concept definition of a
category and the feature type of a parent
category. Otherwise, there is nothing to
prevent conflicts because the feature type

of structured categories is usually defined

by the database designer while the concept

definition of unstructured categories is
generated by a learning algorithm. To pre-
vent conflicts, we assume that an attribute
value cannot be over—generalized if it ap-

pears In the feature type of parent catego-
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ries. In practice, this restriction should not
be a problem because the concept defini-
tion typically imposes tight restrictions on
any relevant attribute. The Attribute
Redefinition Rule is formalized in Defini-
tion 20 below.

20: Attribute

Definition Redefinition

Rule:
Va;E Dom(cd.) (a;€ Dom(ft,)—ft,a;)

2> ft.(a;)) where

C is a child of category P,

Dom is a domain function,

¢dC is the concept definition of catego-
ry C, and

ftx(a;) 1s the value of attribute ai in
the feature type expression of cate-

gory X

It 1s concluded that a parent category
subsumes a child category if concept defi-
nitions of a child category are generated
by restricted concept learners, satisfying

the Attribute Redefinition Rule. Formally,

SUBS(fts, ftc) iff

1. fte=scli(dg,(ftp)) where scl,&-SCL and

. dgeDG,

2. satisfies the Attribute Redefinition Rule
with respect to ftp.

For maintaining a consistent ExOM da-
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tabase, we isolate the non—provable part of
the schema (unstructured category) from
the provable part (structured category).
The taxonomic reasoner verifies the prova-
ble part of the schema.

When adding a new unstructured cate-
gory, the attribute redefinition rule and
subsumption testing is performed to test
consistency with its parent categories. If a
learner is invoked for a new category, a
background knowledge check is enforced
for every data set used where the back-
ground knowledge is the composition of
feature type expressions inherited from
parents concept definitions. Every sub-
sumption relationship given by a designer

is verified.
IV. Prototype Implementation

The architecture of the ExOM contains
three major components. query, classifier
and learner managers. The Query Manag-
er is the interface to the objects, catego-
ries, and types of an ExOM database.
Users can retrieve objects by their content,
define categories and types, and indirectly
invoke Classifier Manager when asking
about category membership. The Classifier
Manager supports the definition and retrie-

val of classifiers as well as testing mem-

bership of an object in a given category
and explaining its decision. The Learner
Manager acquires objects, invokes learning
algorithms, and creates concept defini-
tions. In the case of unsupervised learning,
it also creates categories and inserts ob-
jects into those categories. The knowledge
base contains definitions of categories,
types, concept definitions, learners, and
classifiersw.

A prototype with most of the features
described in Sections 2 and 3 has been im-
plemented in Smalltalk/V Windows. In the
prototype, the Query Manager has been di-
vided into an object manager for manipu-
lating and querying objects, a type manag-
er for defining named type expressions,
and a category manager for defining cate-
gories and teacher supplied concept defini-
tions. The Classifier Manager has been di-
vided into managers for concept defini-
tions and associated membership and ex-
planation functions (classifiers). The
Learner Manager has been divided into a
learner manager for registering learners, a
category set manager for grouping catego-
ries with a learner and classifier; a data
set manager for creating data sets from
queries, external files, or a data generation
program, and an experiment manager for

executing the learn, test, and experiment
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[ Object Manager ]
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Figure. Flow among ExOM Managers

operators. All three concept definitions
(weighted feature records, weighted rules,
and decision trees) have been implement-
ed. For the first two, there is an associated
classifier for single categories (teacher
supplied) as well as for category sets
(learner generated). Several learning algo-
rithms have been implemented: IB3
[AKA91], CN2 [CN89, CB91],and several
versions of ID3 [Quin86]. The ID3 varia-
tions were implemented in C, and an inter-
‘ace to the ExOM is provided in the experi-
ment manager. In addition, a data set gen-
srator as described in [Biss91] has been
mplemented in C, and an interface is pro-

vided in the data set manager. A number

>f features have been omitted due to time

restrictions including feasible values, the
possibility operator, limited query capabili-
ties (only conjunctive semi—joins), support
for unstructured categories, and unsuper-
vised learning algorithms. The prototype is
rather slow because it was built without
an underlying database engine. We are in
the process of converting the object and
category manager to a suitable object—ori-
ented database engine to improve perform-
ance.

The ExOM prototype is invoked by
interactively navigating among a collec-
tion of window interfaces (one for each
manager). Pigure 2 depicts the flow
among interface managers. For flexibility

in defining a knowledge base, links be-
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tween managers are supported in the form
of popup menus. For example when defin-
ing a category set, the user can easily
branch to the learner and classifier manag-
ers. The arrows without a source mean
that the manager can be invoked directly
from the ExOM main menu. The subquery
manager (not mentioned above) handles
category navigation in queries.

The prototype implementation comprises
about 45 new classes, extensions to 10 ex-
isting classes, 200 methods, and 15,000
lines of code including comments. As with
many window-based programs, much of

the code is interface management.

V. Related Works

The ExOM has been inspired by work in
organization theories and knowledge dis-
covery. Work about information process-
ing in organizations ([DW84] and DL861)
and organizations as loosely coupled
systems [OW90] has been a general moti-
vation of our research. Work in knowledge
discovery has been a more specific influ-
ence on our work. Knowledge discovery
has been defined as “the nontrivial extrac-
tion of implicit, previously unknown, and
potentially useful information from data.”

[FPM91]. This definition extends notions

of discovery in machine learning, data-
bases, statistics, and visualization. The
ExOM is a tool for discovering knowledge
in an object-oriented database using a
broad range of learning and classification
approaches.

The notion of a category in the ExOM
has been influenced by work in cognitive
psychology and machine learning.
Researchers in cognitive psychology have
recognized three views of how people rep-
resent concepts [SM81]: classical, proba-
bilistic, and exemplar. In the classical
view, a concept is a collection of features
which are necessary and sufficient for
classification. In the probabilistic view, a
concept definition has a notion of uncer-
tainty for classification. In the exemplar
view, a concept is represented by prototyp-
ical objects. The ExOM supports these
three kinds of concept definitions to the ex-
tent they have been computationally devel-
oped in the machine learning literature. In
particular, the instance based learning al-
gorithm[ AKA91], implemented
ExOM prototype, combines the probabilis-

in the

tic and exemplar views of categories. In
the design of the ExOM, we specifically
considered case — based
([Kolo91] and [GLF89]), decision tree in-

duction [Quin86], apprenticeship learning

reasoning



‘PBH90], and rule induction algorithms
_CN89] as well as instance based learning
AKA91].

Frdm a data model perspective, the
ExOM i1s an extension of object-based
models. Object-based models such as
[LTP86], [Lieb86], and [Scio89] provide
2 more flexible notion of inheritance than
class—based data models such as [MCB90]
and [Kim90]. The object-based models use
delegation instead of inheritance and sepa-
rate object hierarchies from class hierar-
chies. The ExOM combines both notions
(class-based and object-based) through
structured and unstructured categories.
The focus in this paper is the integration
of learning and classification with catego-
ries rather than flexible inheritance. Inheri-
tance and other aspects of the ExOM are
reported in [Jung92].

The ExOM extends the reasoning capa-
bilities of deductive databases [HW92]
and utilizes learning for more than moni-
toring database designs. Through our expe-
cience with SEMLOG [SJW91], we found
‘hat deductive reasoning alone cannot sup-
oort knowledge discovery in organizations.
Likewise, we feel that approaches empha-
sizing subsumption reasoning in query pro-
cessing ([BBMR89] and [BGN89]) and

leduction in classification [ KK90] are too
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narrow. The use of learning and classifica-
tion in the ExOM is not limited to database
design as described in [ISW92], [BWS85],
and [LM89]. Rather, the ExOM is a gener-
al purpose tool in which the user can deter-
mine the application of the learning and
classification components including to
monitor a database design. The ExOM is
most closely related-to the INLEN system
[KMK91] that combines inductive and de-
ductive reasoning with a relational data-
base system. INLEN features some inter-
esting knowledge generation operators in-
cluding discriminant description finding,
consistency and completeness checking,
and relevance checks of attributes and ex-
amples. These operators would be useful
additions to the ExOM. However, the
ExOM is oriented towards a broader range
of learning and classification methods, in-
tegration with an object—oriented data-
base, and explanations of classifications

and learning.

VI. Conclusion

We presented an overview of the Exten-
sional Object Model (ExOM) and described
in detail its support for classification and
learning. Support for machine learning is

divided into two components: classifiers
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and learners. Classifiers test membership
of objects in categories and explain their
reasoning. Learners derive new knowledge
in the form of concept definitions, catego-
ries, and object membership in categories.
Because of the diversity of approaches in
machine learning, the philosophy of the
ExOM is to provide a broad range of clas-
sification and learning methods rather
than a single canonical method. We dem-
onstrated support in the ExOM for several
kinds of concept definitions as well as the
parameterization of learners and classifi-
ers enabling new classifiers and learners
to be introduced. The learning and classifi-
cation components are integrated through
grouping of categories for learning and
classification, operators that support learn-
ing as a phase of database design as well
as classifying and explaining object mem-
bership. To ensure the consistency of
ExOM databases, properties relating con-
cept definitions and feature type expres-
sions were presented which led to several
strategies for ensuring consistency. We
briefly depicted a prototype implementa-
tion in Smalltalk/V that supports most of
the features described in the paper.

We envision a number of short and long
term extensions to the ExOM to improve

its capability as a decision making tool. An

important short-term extension is an ex-
panded experiment operator. The current
experiment operator supports iteration of
training and testing with classification ac-
curacy as the performance measure. To
satisfy more detailed decision making situ-
ations, the experiment operator should sup-
port properties of attributes and categories
(e.g., costs and noise levels), various per-
formance measures (e.g., information theo-
retic measures and costs), data set factors
(e.g., noise generation and skewness), and
experimental factors (e.g., learning algo-
rithms and cost variance levels). These ex-
tensions would support the experiments de-
scribed in recent research [ DM93, MM92]
that evaluate propositions about system
value rather than accuracy. Further exten-
sions of the learn, evaluate, and experi-
ment operators are necessary for unsuper-
vised learning. However, these extensions
are dependent on the development of stan-
dard evaluation approaches in the machine
learning community.

Sensitivity analysis capabilities are long
—term extensions to the ExOM that are
necessary to make machine learning a
widely—used analysis tool. In order to bet-
ter understand a concept definition, a deci-
sion maker may want to know the effect

on the output when an attribute changes



its value such that one or more terms in a
concept definition change state (True to
False or vice-versa). If the concept defini-
tion is deterministic, an explanation func-
tion can be implemented as a form of Bool-
ean sensitivity analysis based on the no-
tion of a Boolean derivative [Blan90]. If
the concept definition uses weights, the
Boolean derivative does not directly apply
although the derivative of fuzzy wvalued
functions might [Blan90]. A second kind
of sensitivity analysis is output oriented. A
decision maker may want to know how to
change the values of the attributes to
achieve a desired change of outcome. For

example, if the output is the prediction of
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changing the states of attributes, the deci-
sion maker may want to know the least
cost way to change categories. V
With . these extensions and further
usage, the ExOM can become an impor-
tant tool to explore the integration of ma-
chine learning and object-oriented data-
bases. We believe that this integration can
Increase the value of object—oriented data-
bases and lead to improved decision making

through wider usage of machine learning.
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