• Title/Summary/Keyword: Classification method

Search Result 7,229, Processing Time 0.039 seconds

A Dynamic Variable Window-based Topographical Classification Method Using Aerial LiDAR Data (항공 라이다 데이터를 이용한 동적 가변 윈도우 기반 지형 분류 기법)

  • Sung, Chul-Woong;Lee, Sung-Gyu;Park, Chang-Hoo;Lee, Ho-Jun;Kim, Yoo-Sung
    • Spatial Information Research
    • /
    • v.18 no.5
    • /
    • pp.13-26
    • /
    • 2010
  • In this paper, a dynamic variable window-based topographical classification method is proposed which has the changeable classification units depending on topographical properties. In the proposed scheme, to im prove the classification efficiency, the unit of topographical classification can be changeable dynamically according to the topographical properties and repeated patterns. Also, in this paper, the classification efficiency and accuracy of the proposed method are analyzed in order to find an optimal maximum decision window-size through the experiment. According to the experiment results, the proposed dynamic variable window-based topographical classification method maintains similar accuracy but remarkably reduce computing time than that of a fixed window-size based one, respectively.

Land Surface Classification With Airborne Multi-spectral Scanner Image Using A Neuro-Fuzzy Model (뉴로-퍼지 모델을 이용한 항공다중분광주사기 영상의 지표면 분류)

  • Han, Jong-Gyu;Ryu, Keun-Ho;Yeon, Yeon-Kwang;Chi, Kwang-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.939-944
    • /
    • 2002
  • In this paper, we propose and apply new classification method to the remotely sensed image acquired from airborne multi-spectral scanner. This is a neuro-fuzzy image classifier derived from the generic model of a 3-layer fuzzy perceptron. We implement a classification software system with the proposed method for land cover image classification. Comparisons with the proposed and maximum-likelihood classifiers are also presented. The results show that the neuro-fuzzy classification method classifies more accurately than the maximum likelihood method. In comparing the maximum-likelihood classification map with the neuro-fuzzy classification map, it is apparent that there is more different as amount as 7.96% in the overall accuracy. Most of the differences are in the "Building" and "Pine tree", for which the neuro-fuzzy classifier was considerably more accurate. However, the "Bare soil" is classified more correctly with the maximum-likelihood classifier rather than the neuro-fuzzy classifier.

Application Traffic Classification using PSS Signature

  • Ham, Jae-Hyun;An, Hyun-Min;Kim, Myung-Sup
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2261-2280
    • /
    • 2014
  • Recently, network traffic has become more complex and diverse due to the emergence of new applications and services. Therefore, the importance of application-level traffic classification is increasing rapidly, and it has become a very popular research area. Although a lot of methods for traffic classification have been introduced in literature, they have some limitations to achieve an acceptable level of performance in real-time application-level traffic classification. In this paper, we propose a novel application-level traffic classification method using payload size sequence (PSS) signature. The proposed method generates unique PSS signatures for each application using packet order, direction and payload size of the first N packets in a flow, and uses them to classify application traffic. The evaluation shows that this method can classify application traffic easily and quickly with high accuracy rates, over 99.97%. Furthermore, the method can also classify application traffic that uses the same application protocol or is encrypted.

A Study of Land-Cover Classification Technique for Merging Image Using Fuzzy C-Mean Algorithm (Fuzzy C-Mean 알고리즘을 이용한 중합 영상의 토지피복분류기법 연구)

  • 신석효;안기원;양경주
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.2
    • /
    • pp.171-178
    • /
    • 2004
  • The advantage of the remote sensing is extraction the information of wide area rapidly. Such advantage is the resource and environment are quick and efficient method to grasps accurately method through the land cover classification of wide area. Accordingly this study was presented more better land cover classification method through an algorithm development. We accomplished FCM(Fuzzy C-Mean) classification technique with MLC (Maximum Likelihood classification) technique to be general land cover classification method in the content of research. And evaluated the accuracy assessment of two classification method. This study is used to the high-resolution(6.6m) Electro-Optical Camera(EOC) panchromatic image of the first Korea Multi-Purpose Satellite 1(KOMPSAT-1) and the multi-spectral Moderate Resolution Imaging Spectroradiometer(MODIS) image data(36 bands).

Reinforcement Post-Processing and Feedback Algorithm for Optimal Combination in Bottom-Up Hierarchical Classification (상향식 계층분류의 최적화 된 병합을 위한 후처리분석과 피드백 알고리즘)

  • Choi, Yun-Jeong;Park, Seung-Soo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.2
    • /
    • pp.139-148
    • /
    • 2010
  • This paper shows a reinforcement post-processing method and feedback algorithm for improvement of assigning method in classification. Especially, we focused on complex documents that are generally considered to be hard to classify. A basis factors in traditional classification system are training methodology, classification models and features of documents. The classification problem of the documents containing shared features and multiple meanings, should be deeply mined or analyzed than general formatted data. To address the problems of these document, we proposed a method to expand classification scheme using decision boundary detected automatically in our previous studies. The assigning method that a document simply decides to the top ranked category, is a main factor that we focus on. In this paper, we propose a post-processing method and feedback algorithm to analyze the relevance of ranked list. In experiments, we applied our post-processing method and one time feedback algorithm to complex documents. The experimental results show that our system does not need to change the classification algorithm itself to improve the accuracy and flexibility.

Classification of e-mail Using Dynamic Category Hierarchy and Automatic category generation (자동 카테고리 생성과 동적 분류 체계를 사용한 이메일 분류)

  • Ahn Chan Min;Park Sang Ho;Lee Ju-Hong;Choi Bum-Ghi;Park Sun
    • Journal of Intelligence and Information Systems
    • /
    • v.10 no.2
    • /
    • pp.79-89
    • /
    • 2004
  • Since the amount of E-mail messages has increased , we need a new technique for efficient e-mail classification. E-mail classifications are grouped into two classes: binary classification, multi-classification. The current binary classification methods are mostly spm mail classification methods which are based on rule driven, bayesian, SVM, etc. The current multi- classification methods are based on clustering which groups e-mails by similarity. In this paper, we propose a novel method for e-mail classification. It combines the automatic category generation method based on the vector model and the dynamic category hierarchy construction method. This method can multi-classify e-mail automatically and manage a large amount of e-mail efficiently. In addition, this method increases the search accuracy by dynamic reclassification of e-mails.

  • PDF

Emotion Recognition Method Using FLD and Staged Classification Based on Profile Data (프로파일기반의 FLD와 단계적 분류를 이용한 감성 인식 기법)

  • Kim, Jae-Hyup;Oh, Na-Rae;Jun, Gab-Song;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.6
    • /
    • pp.35-46
    • /
    • 2011
  • In this paper, we proposed the method of emotion recognition using staged classification model and Fisher's linear discriminant. By organizing the staged classification model, the proposed method improves the classification rate on the Fisher's feature space with high complexity. The staged classification model is achieved by the successive combining of binary classification model which has simple structure and high performance. On each stage, it forms Fisher's linear discriminant according to the two groups which contain each emotion class, and generates the binary classification model by using Adaboost method on the Fisher's space. Whole learning process is repeatedly performed until all the separations of emotion classes are finished. In experimental results, the proposed method provides about 72% classification rate on 8 classes of emotion and about 93% classification rate on specific 3 classes of emotion.

A Rule-Based Image Classification Method for Analysis of Urban Development in the Capital Area (수도권 도시개발 분석을 위한 규칙기반 영상분류)

  • Lee, Jin-A;Lee, Sung-Soon
    • Spatial Information Research
    • /
    • v.19 no.6
    • /
    • pp.43-54
    • /
    • 2011
  • This study proposes a rule-based image classification method for the time-series analysis of changes in the land surface of the Seongnam-Yongin area using satellite-image data from 2000 to 2009. In order to identify the change patterns during each period, 11 classes were employed in accordance with statistical/mathematic rules. A generalized algorithm was used so that the rules could be applied to the unsupervised-classification method that does not establish any training sites. The results showed that the urban area of the object increased by 145% due to housing-site development. The image data from 2009 had a classification accuracy of 98%. For method verification, the results were compared to land-cover changes through Post-classification comparison. The maximum utilization of the available data within multiple images and the optimized classification allowed for an improvement in the classification accuracy. The proposed rule-based image-classification method is expected to be widely employed for the time-series analysis of images to produce a thematic map for urban development and to monitor urban development and environmental change.

Automated Training from Landsat Image for Classification of SPOT-5 and QuickBird Images

  • Kim, Yong-Min;Kim, Yong-Il;Park, Wan-Yong;Eo, Yang-Dam
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.317-324
    • /
    • 2010
  • In recent years, many automatic classification approaches have been employed. An automatic classification method can be effective, time-saving and can produce objective results due to the exclusion of operator intervention. This paper proposes a classification method based on automated training for high resolution multispectral images using ancillary data. Generally, it is problematic to automatically classify high resolution images using ancillary data, because of the scale difference between the high resolution image and the ancillary data. In order to overcome this problem, the proposed method utilizes the classification results of a Landsat image as a medium for automatic classification. For the classification of a Landsat image, a maximum likelihood classification is applied to the image, and the attributes of ancillary data are entered as the training data. In the case of a high resolution image, a K-means clustering algorithm, an unsupervised classification, was conducted and the result was compared to the classification results of the Landsat image. Subsequently, the training data of the high resolution image was automatically extracted using regular rules based on a RELATIONAL matrix that shows the relation between the two results. Finally, a high resolution image was classified and updated using the extracted training data. The proposed method was applied to QuickBird and SPOT-5 images of non-accessible areas. The result showed good performance in accuracy assessments. Therefore, we expect that the method can be effectively used to automatically construct thematic maps for non-accessible areas and update areas that do not have any attributes in geographic information system.

A GA-based Binary Classification Method for Bankruptcy Prediction (도산예측을 위한 유전 알고리듬 기반 이진분류기법의 개발)

  • Min, Jae-H.;Jeong, Chul-Woo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.33 no.2
    • /
    • pp.1-16
    • /
    • 2008
  • The purpose of this paper is to propose a new binary classification method for predicting corporate failure based on genetic algorithm, and to validate its prediction power through empirical analysis. Establishing virtual companies representing bankrupt companies and non-bankrupt ones respectively, the proposed method measures the similarity between the virtual companies and the subject for prediction, and classifies the subject into either bankrupt or non-bankrupt one. The values of the classification variables of the virtual companies and the weights of the variables are determined by the proper model to maximize the hit ratio of training data set using genetic algorithm. In order to test the validity of the proposed method, we compare its prediction accuracy with ones of other existing methods such as multi-discriminant analysis, logistic regression, decision tree, and artificial neural network, and it is shown that the binary classification method we propose in this paper can serve as a premising alternative to the existing methods for bankruptcy prediction.