• Title/Summary/Keyword: Classification and Regression Trees

검색결과 64건 처리시간 0.024초

UAV 영상과 SfM 기술을 이용한 가로수의 탄소저장량 추정 (Estimation Carbon Storage of Urban Street trees Using UAV Imagery and SfM Technique)

  • 김다슬;이동근;허한결
    • 한국환경복원기술학회지
    • /
    • 제22권6호
    • /
    • pp.1-14
    • /
    • 2019
  • Carbon storage is one of the regulating ecosystem services provided by urban street trees. It is important that evaluating the economic value of ecosystem services accurately. The carbon storage of street trees was calculated by measuring the morphological parameter on the field. As the method is labor-intensive and time-consuming for the macro-scale research, remote sensing has been more widely used. The airborne Light Detection And Ranging (LiDAR) is used in obtaining the point clouds data of a densely planted area and extracting individual trees for the carbon storage estimation. However, the LiDAR has limitations such as high cost and complicated operations. In addition, trees change over time they need to be frequently. Therefore, Structure from Motion (SfM) photogrammetry with unmanned Aerial Vehicle (UAV) is a more suitable method for obtaining point clouds data. In this paper, a UAV loaded with a digital camera was employed to take oblique aerial images for generating point cloud of street trees. We extracted the diameter of breast height (DBH) from generated point cloud data to calculate the carbon storage. We compared DBH calculated from UAV data and measured data from the field in the selected area. The calculated DBH was used to estimate the carbon storage of street trees in the study area using a regression model. The results demonstrate the feasibility and effectiveness of applying UAV imagery and SfM technique to the carbon storage estimation of street trees. The technique can contribute to efficiently building inventories of the carbon storage of street trees in urban areas.

Performance Comparison of Decision Trees of J48 and Reduced-Error Pruning

  • Jin, Hoon;Jung, Yong Gyu
    • International journal of advanced smart convergence
    • /
    • 제5권1호
    • /
    • pp.30-33
    • /
    • 2016
  • With the advent of big data, data mining is more increasingly utilized in various decision-making fields by extracting hidden and meaningful information from large amounts of data. Even as exponential increase of the request of unrevealing the hidden meaning behind data, it becomes more and more important to decide to select which data mining algorithm and how to use it. There are several mainly used data mining algorithms in biology and clinics highlighted; Logistic regression, Neural networks, Supportvector machine, and variety of statistical techniques. In this paper it is attempted to compare the classification performance of an exemplary algorithm J48 and REPTree of ML algorithms. It is confirmed that more accurate classification algorithm is provided by the performance comparison results. More accurate prediction is possible with the algorithm for the goal of experiment. Based on this, it is expected to be relatively difficult visually detailed classification and distinction.

CART를 이용한 운율구 추출 및 음소 지속 시간 모델링 (The Modelling of Prosodic Phrasing and Segmental Duration using CART)

  • 이상호
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 1998년도 학술발표대회 논문집 제17권 1호
    • /
    • pp.135-138
    • /
    • 1998
  • 본 논문에서는 트리 기반 모델링 기법 중 하나인 CART(Classification And Regression Trees) 방법을 이용하여, 운율구 추출, 운율구 사이의 휴지 기간, 음소 지속 시간을 모델링 하고자 한다. 총 400문장(약 33분)의 코퍼스를 수집한 후, 그 중 240문장(약 20분)을 이용하여 결정 트리와 회귀 트리를 학습시키고 160문장(약 13분)에 대해 실험하였다. 운율구 경계를 결정하는 결정 트리의 오류율은 14.6%이었고, 운율구 사이의 휴지 기간과 음소 지속 시간을 예측하는 회귀 트리들의 평균 제곱 오류근(RMSE)이 각각 132.61msec, 21.97msec이었다.

K-ToBI 기호에 준한 F0 곡선 생성 알고리듬 (A computational algorithm for F0 contour generation in Korean developed with prosodically labeled databases using K-ToBI system)

  • 이용주;이숙향;김종진;고현주;김영일;김상훈;이정철
    • 대한음성학회지:말소리
    • /
    • 제35_36호
    • /
    • pp.131-143
    • /
    • 1998
  • This study describes an algorithm for the F0 contour generation system for Korean sentences and its evaluation results. 400 K-ToBI labeled utterances were used which were read by one male and one female announcers. F0 contour generation system uses two classification trees for prediction of K-ToBI labels for input text and 11 regression trees for prediction of F0 values for the labels. Evaluation results of the system showed 77.2% prediction accuracy for prediction of IP boundaries and 72.0% prediction accuracy for AP boundaries. Information of voicing and duration of the segments was not changed for F0 contour generation and its evaluation. Evaluation results showed 23.5Hz RMS error and 0.55 correlation coefficient in F0 generation experiment using labelling information from the original speech data.

  • PDF

Pruning the Boosting Ensemble of Decision Trees

  • Yoon, Young-Joo;Song, Moon-Sup
    • Communications for Statistical Applications and Methods
    • /
    • 제13권2호
    • /
    • pp.449-466
    • /
    • 2006
  • We propose to use variable selection methods based on penalized regression for pruning decision tree ensembles. Pruning methods based on LASSO and SCAD are compared with the cluster pruning method. Comparative studies are performed on some artificial datasets and real datasets. According to the results of comparative studies, the proposed methods based on penalized regression reduce the size of boosting ensembles without decreasing accuracy significantly and have better performance than the cluster pruning method. In terms of classification noise, the proposed pruning methods can mitigate the weakness of AdaBoost to some degree.

식생가뭄반응지수 (VegDRI)를 활용한 위성영상 기반 가뭄 평가 (Satellite-based Hybrid Drought Assessment using Vegetation Drought Response Index in South Korea (VegDRI-SKorea))

  • 남원호;;;장민원;홍석영
    • 한국농공학회논문집
    • /
    • 제57권4호
    • /
    • pp.1-9
    • /
    • 2015
  • The development of drought index that provides detailed-spatial-resolution drought information is essential for improving drought planning and preparedness. The objective of this study was to develop the concept of using satellite-based hybrid drought index called the Vegetation Drought Response Index in South Korea (VegDRI-SKorea) that could improve spatial resolution for monitoring local and regional drought. The VegDRI-SKorea was developed using the Classification And Regression Trees (CART) algorithm based on remote sensing data such as Normalized Difference Vegetation Index (NDVI) from MODIS satellite images, climate drought indices such as Self Calibrating Palmer Drought Severity Index (SC-PDSI) and Standardized Precipitation Index (SPI), and the biophysical data such as land cover, eco region, and soil available water capacity. A case study has been done for the 2012 drought to evaluate the VegDRI-SKorea model for South Korea. The VegDRI-SKorea represented the drought areas from the end of May and to the severe drought at the end of June. Results show that the integration of satellite imageries and various associated data allows us to get improved both spatially and temporally drought information using a data mining technique and get better understanding of drought condition. In addition, VegDRI-SKorea is expected to contribute to monitor the current drought condition for evaluating local and regional drought risk assessment and assisting drought-related decision making.

CART를 이용한 Tree Model의 성능평가 (Using CART to Evaluate Performance of Tree Model)

  • 정용규;권나연;이영호
    • 서비스연구
    • /
    • 제3권1호
    • /
    • pp.9-16
    • /
    • 2013
  • 데이터 분석가에게 많은 노력이 요구되지 않으면서 사용자가 쉽게 분석결과를 이해할 수 있는 범용 분류기법으로서 가장 대표적인 것은 Breiman이 개발한 의사결정나무를 들 수 있다. 의사결정나무에서 기본이 되는 2가지 핵심내용은 독립변수의 차원 공간을 반복적으로 분할하는 것과 평가용 데이터를 사용하여 가지치기를 하는 것이다. 분류문제에서 반응변수는 범주형 변수여야 한다. 반복적 분할은 변수 의 차원 공간을 겹치지 않는 다차원 직사각형으로 나눈다. 여기서 변수는 연속형, 이진 혹은 서열의 척도이다. 본 논문에서는 새로운 사례를 분류함에 있어서 분류의 성능을 평가하기 위해 분류나무의 정확도 정밀도 재현률 등을 실험하고자 한다.

  • PDF

Ensemble Methods Applied to Classification Problem

  • Kim, ByungJoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권1호
    • /
    • pp.47-53
    • /
    • 2019
  • The idea of ensemble learning is to train multiple models, each with the objective to predict or classify a set of results. Most of the errors from a model's learning are from three main factors: variance, noise, and bias. By using ensemble methods, we're able to increase the stability of the final model and reduce the errors mentioned previously. By combining many models, we're able to reduce the variance, even when they are individually not great. In this paper we propose an ensemble model and applied it to classification problem. In iris, Pima indian diabeit and semiconductor fault detection problem, proposed model classifies well compared to traditional single classifier that is logistic regression, SVM and random forest.

충전데이터를 이용한 이상감지 제어시스템 (Abnormality Detection Control System using Charging Data)

  • Moon, Sang-Ho
    • 한국정보통신학회논문지
    • /
    • 제26권2호
    • /
    • pp.313-316
    • /
    • 2022
  • In this paper, we implement a system that detects abnormalities in the charging data transmitted from the charger during the charging process of electric vehicles and controls them remotely. Using classification algorithms such as logistic regression, KNN, SVM, and decision trees, to do this, an analysis model is created that judges the data received from the charger as normal and abnormal. In addition, a model is created to determine the cause of the abnormality using the existing charging data based on the analysis of the type of charger abnormality. Finally, it is solved using unsupervised learning method to find new patterns of abnormal data.

XGBoost와 SHAP 기법을 활용한 근로자 이직 예측에 관한 연구 (A Study on the Employee Turnover Prediction using XGBoost and SHAP)

  • 이재준;이유린;임도현;안현철
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제30권4호
    • /
    • pp.21-42
    • /
    • 2021
  • Purpose In order for companies to continue to grow, they should properly manage human resources, which are the core of corporate competitiveness. Employee turnover means the loss of talent in the workforce. When an employee voluntarily leaves his or her company, it will lose hiring and training cost and lead to the withdrawal of key personnel and new costs to train a new employee. From an employee's viewpoint, moving to another company is also risky because it can be time consuming and costly. Therefore, in order to reduce the social and economic costs caused by employee turnover, it is necessary to accurately predict employee turnover intention, identify the factors affecting employee turnover, and manage them appropriately in the company. Design/methodology/approach Prior studies have mainly used logistic regression and decision trees, which have explanatory power but poor predictive accuracy. In order to develop a more accurate prediction model, XGBoost is proposed as the classification technique. Then, to compensate for the lack of explainability, SHAP, one of the XAI techniques, is applied. As a result, the prediction accuracy of the proposed model is improved compared to the conventional methods such as LOGIT and Decision Trees. By applying SHAP to the proposed model, the factors affecting the overall employee turnover intention as well as a specific sample's turnover intention are identified. Findings Experimental results show that the prediction accuracy of XGBoost is superior to that of logistic regression and decision trees. Using SHAP, we find that jobseeking, annuity, eng_test, comm_temp, seti_dev, seti_money, equl_ablt, and sati_safe significantly affect overall employee turnover intention. In addition, it is confirmed that the factors affecting an individual's turnover intention are more diverse. Our research findings imply that companies should adopt a personalized approach for each employee in order to effectively prevent his or her turnover.