이 연구는 학과 과제와 기말 프로젝트에 있는 문제들 중에서 컴퓨터를 활용하여 수학적 문제 해결을 해 가는 세 명의 예비 교사를 연구 조사하였다 모든 연구 참여자들의 활동과 컴퓨터를 활용한 문제 해결 과정을 관찰하고 촬영하였다. 가능한 경우 예비 교사들의 탐구활동 전과 후 및 탐구활동 중에 개별적인 면담을 하였다. 자료수집 방법은 관찰, 면담, 현장 기록, 제출과제, 컴퓨터 작업, 오디오와 비디오 테이프를 사용하였다. 수학적 문제 해결 초기 단계에서는, 모든 연구 참여자들이 그래프와 데이터를 사용하여 모델 만들기, 사인 함수의 일반적 개념에 대하여 절차적 지식과 개념적 지식이 약하게 형성되어 있었으나 컴퓨터를 활용한 수학적 문제 해결 활동을 통하여 그들은 절차적 지식과 개념적 지식을 강하게 구성하였고 그들을 적절하게 연계시킬 수 있었다
학생들이 문장으로 이루어진 문제를 해결과정에서 발생하는 오류의 유형을 분류하고, 각각의 오류 유형을 보인 학생들의 면담(인터뷰)을 통하여 오류를 범하게 된 요인을 분석하였다. 연구결과에 따라 나타난 대표적인 오류 유형은 '문항 이해의 부족', '풀이과정의 오류', '정리나 정의에 대한 왜곡된 이해', '이기과정의 오류', '기술적 오류', '풀이과정 생략' 등으로 나타났다. 또한 일부 학생들은 문장제에 대한 부담감으로 문제를 해결하기보다는 포기하는 현상이 나타났으며, 학생들은 문장으로 이루어진 문제를 해결을 하기 위해서 무엇보다 문제에 대한 이해가 필요한데, 이 부분이 절대적으로 부족하여 문제에서 주어진 자료를 자의적으로 판단하고 활용하는 경향이 짙게 보였다. 교사는 학생들이 문장제 문제 해결과정에서 발생하는 오류를 미리 파악하고 이를 보안할 수 있는 교수-학습방법으로 학생들을 지도한다면 오류를 사전에 예방하여 발생빈도를 줄일 수 있고, 학생들로 하여금 효과적인 학습이 이루어 질 수 있을 것이다.
We become an industry information society which is advanced to the altitude with the today. The information to be loading various goods each other together at a circumstance environment is increasing extremely. The restriction recognizes the data of many Quantity and it follows because the human deals the task to classify. The development of a mathematical formulation for solving a problem like this is often very difficult. But Artificial intelligent systems such as neural networks have been successfully applied to solving complex problems in the area of pattern recognition and classification. So, in this paper a neural network approach is used to recognize and classification problem was broken into two steps. The first step consist of using a neural network to recognize the existence of purpose pattern. The second step consist of a neural network to classify the kind of the first step pattern. The neural network leaning algorithm is to use error back-propagation algorithm and to find the weight and the bias of optimum. Finally two step simulation are presented showing the efficacy of using neural networks for purpose recognition and classification.
Thinking methods have been widely recognized as phenomenon of problem solving in architectural design process and as one of the bases of creativity. In recent years the study of thinking methods have become a major focus of design research. And the purpose of the paper will understand the phenomenon of characteristic and classification of thinking methods in the architectural design process. Extensive protocols are recorded. In particular, the protocols contain sufficient information to make a detailed picture of the architect's problem-solving processes. A protocol study is reported in which the experimental data by architect's is analyzed through the visual protocol analysis method. These findings will help understand the architectural design nature. And they supply a direction for creative education for architects and the base for CAAD system development through understanding for architect's thinking methods.
본 연구에서는 슈타이너$.$레무스(Steiner-Lehmus) 정리에 대한 다양한 증명을 찾아 이들 증명에 사용된 수학적 개념, 정리, 방법들을 고찰하며, 몇 가지 증명에 대해서는 기존의 기술 방법을 개선한 좀더 구체적인 형태로 기술하였다. 이를 통해, 이등변삼각형의 흥미로운 성질인 슈타이너$.$레무스 정리에 대한 다양한 증명 방법을 밝히고, 중등학교 수학교육의 질적이고 양적인 확장을 위한 기초 자료를 제공할 것이다.
4차 산업혁명 시대가 도래하면서 인공지능에 대한 교육이 활발하게 진행되고 있다. 그러나 기존의 강의식 교육은 지식의 전달을 목적으로 두고 있어 인공지능 분야에서 요구하는 능동적인 문제해결 능력과 인공지능 활용능력을 기르는 데 어려움을 겪는다. 본 논문에서는 이를 해결하기 위해 학습자가 제시된 문제를 해결하는 과정에서 학습이 이루어지는 문제 중심학습 기반 교육 방안을 제안한다. 학습자들에게 제공되는 문제는 완성된 하나의 프로젝트이다. 이 프로젝트는 3가지 종류로 구성된다. 분류 모델, 분류 모델의 학습 데이터, 분류된 결과에 따라 실행될 블록 코드. 해당 프로젝트는 동작은 하지만 각각의 구성요소들이 낮은 동작 수준을 보이도록 설계되어 있다. 이를 해결하기 위해 학습자들은 테스팅을 통해 프로젝트의 문제점을 찾고 토론을 통해 해결책을 찾아 좀 더 높은 동작 수준으로 개선하는 과정을 거치며 컴퓨팅 사고력 향상을 기대할 수 있다.
Purpose : PBL is a teaching method to learn problem-solving process. Present study was to investigate the predictors of academic achievement when PBL is applied to students of physical therapy. Method : We Performed in-depth interviews and analyzed using the qualitative analysis by randomly assigning 5 of twenty four students who attended the class. Result : The results are classified into two categories and six sub-subjects. Based on two system of classification, PBL showed the learning effect through problem-solving methods because students directly participated in these processes. Also, students need to clearly comprehend communication method and decision-making process in order to progress the class smoothly. Conclusion : Therefore, futher studies will be continuously needed on how we apply PBL to various curriculums of physical therapy.
최근 기계학습 분야에서 커널머신을 이용한 대표적 분류기로 Adaboost가 주목받고 있다. Adaboost는 통계적 학습이론에 기반하여 뛰어난 일반화 성능을 보여주며, 다양한 패턴인식 문제에 적용되고 있다. 그러나, Adaboost는 이진 분류기이므로 다중표적 분류 문제에 곧바로 적용할 수 없다. 일반적으로 다중 분류 문제를 해결하는 기법으로 One-Vs-All 기법과 Pair-Wise 기법이 대표적이다. 이러한 두 기법은 다중 분류 문제를 여러 개의 이진 분류 문제로 분할하고, 이들을 다시 종합하여 최종 결정을 내리는 출력코딩이라는 일반적인 기법으로 실제 시스템 구성에 적합할만한 분류 성능을 보여주지 못하는 경우가 대부분이다. 본 논문에서는 이진 분류기인 Adaboost의 다중 분류 확장 방안으로 원형 기반 함수를 약한 분류기로 이용하는 Adaboost 기반 다중표적 분류 기법을 제안한다.
이 논문에서는 자연어로 구성된 수학 문장제 문제 자동 풀이하기 위한 Transformer 기반의 생성 모델인 KoEPT를 제안한다. 수학 문장제 문제는 일상 상황을 수학적 형식으로 표현한 자연어 문제이다. 문장제 문제 풀이 기술은 함축된 논리를 인공지능이 파악해야 한다는 요구사항을 지녀 최근 인공지능의 언어 이해 능력을 증진하기 위해 국내외에서 다양하게 연구되고 있다. 한국어의 경우 문제를 유형으로 분류하여 풀이하는 기법들이 주로 시도되었으나, 이러한 기법은 다양한 수식을 포괄하여 분류 난도가 높은 데이터셋에 적용하기 어렵다는 한계가 있다. 본 논문은 이에 대해 '식' 토큰과 포인터 네트워크를 사용하는 KoEPT 모델을 사용했다. 이 모델의 성능을 측정하기 위해 현존하는 한국어 수학 문장제 문제 데이터셋인 IL, CC, ALG514의 분류 난도를 측정한 후 5겹 교차 검증 기법을 사용하여 KoEPT의 성능을 평가하였다. 평가에 사용된 한국어 데이터셋들에 대하여, KoEPT는 CC에서는 기존 최고 성능과 대등한 99.1%, IL과 ALG514에서 각각 89.3%, 80.5%로 새로운 최고 성능을 얻었다. 뿐만 아니라 평가 결과 KoEPT는 분류 난도가 높은 데이터셋에 대해 상대적으로 개선된 성능을 보였다. KoEPT가 분류 난도의 영향을 덜 받으며 좋은 성능을 얻게 된 이유를 '식' 토큰과 포인터 네트워크 때문이라는 것을 ablation study를 통해서 밝혔다.
Artificial Neural Networks (ANNs) are artificial learning algorithms that provide successful results in solving many machine learning problems such as classification, prediction, object detection, object segmentation, image and video classification. There is an increasing number of studies that use ANNs as a prediction tool in soil classification. The aim of this research was to understand the role of hyperparameter optimization in enhancing the accuracy of ANNs for soil type classification. The research results has shown that the hyperparameter optimization and hyperparamter optimized ANNs can be utilized as an efficient mechanism for increasing the estimation accuracy for this problem. It is observed that the developed hyperparameter tool (HyperNetExplorer) that is utilizing the Covariance Matrix Adaptation Evolution Strategy (CMAES), Genetic Algorithm (GA) and Jaya Algorithm (JA) optimization techniques can be successfully used for the discovery of hyperparameter optimized ANNs, which can accomplish soil classification with 100% accuracy.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.