• Title/Summary/Keyword: Classification Analysis

Search Result 8,044, Processing Time 0.04 seconds

Reducing Spectral Signature Confusion of Optical Sensor-based Land Cover Using SAR-Optical Image Fusion Techniques

  • ;Tateishi, Ryutaro;Wikantika, Ketut;M.A., Mohammed Aslam
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.107-109
    • /
    • 2003
  • Optical sensor-based land cover categories produce spectral signature confusion along with degraded classification accuracy. In the classification tasks, the goal of fusing data from different sensors is to reduce the classification error rate obtained by single source classification. This paper describes the result of land cover/land use classification derived from solely of Landsat TM (TM) and multisensor image fusion between JERS 1 SAR (JERS) and TM data. The best radar data manipulation is fused with TM through various techniques. Classification results are relatively good. The highest Kappa Coefficient is derived from classification using principal component analysis-high pass filtering (PCA+HPF) technique with the Overall Accuracy significantly high.

  • PDF

Analysis of Korean Standard Classification of Diseases(Oriental Medicine) and Its Proposition of Amendment ($\mathbb{\ulcorner}$한국표준질병사인분류(한의$\mathbb{\lrcorner}$의 분석과 개선안에 관한 연구)

  • 박경모;신현규;최선미
    • The Journal of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.9-19
    • /
    • 2000
  • Objective : We proposed fundamental rules of prospective Korean Standard Classification of Diseases(Oriental Medicine). Methods : We analysed Korean Standard Classification of Diseases(Oriental Medicine)(established in 1994) in comparison with ICD-10 and Chinese Standard Classification of Disease(Traditional Chinese Medicine). Secondly, we analysed the diagnostic structure of Modem oriental medicine. Results : Korean Standard Classification of Diseases has an inappropriate writing structure, logical errors of classification, confusion of symptoms, 'bing', and 'zheng', inappropriate comparison of disease designations in oriental medicine and western medicine, and the ommission of important items. Secondly, we demonstrate the relations of 'bing' and 'zheng' in modem oriental medicine and disease designations in oriental medicine and western medicine. Conclusions : We propose the separate classification of 'bing' and 'zheng', the qualification of designated names, the structure of 'bing' and 'zheng' system, and a different writing method.

  • PDF

Calculation and Regulation Proposal of Light Pollution from Road Lightings (도로조명의 빛공해 계산 및 규제안 제안)

  • Cho, Sook-Hyun;Lee, Min-Wook;Choi, Hyeon-Seok;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.12
    • /
    • pp.21-26
    • /
    • 2011
  • This is a study to establish regulations against light pollution for lighting on roads. Many kinds of light pollution by luminaire on roads was calculated and analyzed by applying the classification method of luminaires(Cut-off classification of IDA-IESNA, BUG Rating Classification) and the calculation method of Upward Lighting Ratio of CIE among measures to prevent light pollution that international lighting organizations suggest. As a result of the analysis, it was found that the regulation by Cutoff of IESNA and ULR classification of CIE could be one for scattered light of light pollution compared to BUG classification but is not sufficient for the regulation of light tresspass or glare. BUG classification by each lighting zone was suggested as threshold value of the light pollution regulation considering domestic conditions.

Analysis of Classification for Maintenance Management in Urban Transit Facility (도시철도 보선시설물 유지관리를 위한 표준 분류체게 연구)

  • Park, Seo-Young;Shin, Jeong-Rul;Park, Ki-Jun;Kim, Gil-Dong;Han, Seok-Yun
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.448-453
    • /
    • 2003
  • Most urban transit companies recognize the necessity of classification for facility management Classification for urban transit facility is necessary for standardization of maintenance management. The practical application. however. is not easy because of the absence of standardization of classification for urban transit facility and the difficulty in objectification of breakdown structure. This study suggests a proposal of classification for maintenance management in urban transit facility. This study defines standardization of classification as facility, work, maintenance and attribute to manage urban transit facility. And attribute classification consist of material, equipment and document. The suggested classification can be used as a useful maintenance management tool that enables evaluation of urban transit facility by standardization. The results of this study could be used as references for related urban transit companies.

  • PDF

Enhancement of Text Classification Method (텍스트 분류 기법의 발전)

  • Shin, Kwang-Seong;Shin, Seong-Yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.155-156
    • /
    • 2019
  • Traditional machine learning based emotion analysis methods such as Classification and Regression Tree (CART), Support Vector Machine (SVM), and k-nearest neighbor classification (kNN) are less accurate. In this paper, we propose an improved kNN classification method. Improved methods and data normalization achieve the goal of improving accuracy. Then, three classification algorithms and an improved algorithm were compared based on experimental data.

  • PDF

Modification of acceleration signal to improve classification performance of valve defects in a linear compressor

  • Kim, Yeon-Woo;Jeong, Wei-Bong
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.71-79
    • /
    • 2019
  • In general, it may be advantageous to measure the pressure pulsation near a valve to detect a valve defect in a linear compressor. However, the acceleration signals are more advantageous for rapid classification in a mass-production line. This paper deals with the performance improvement of fault classification using only the compressor-shell acceleration signal based on the relation between the refrigerant pressure pulsation and the shell acceleration of the compressor. A transfer function was estimated experimentally to take into account the signal noise ratio between the pressure pulsation of the refrigerant in the suction pipe and the shell acceleration. The shell acceleration signal of the compressor was modified using this transfer function to improve the defect classification performance. The defect classification of the modified signal was evaluated in the acceleration signal in the frequency domain using Fisher's discriminant ratio (FDR). The defect classification method was validated by experimental data. By using the method presented, the classification of valve defects can be performed rapidly and efficiently during mass production.

The Classifications using by the Merged Imagery from SPOT and LANDSAT

  • Kang, In-Joon;Choi, Hyun;Kim, Hong-Tae;Lee, Jun-Seok;Choi, Chul-Ung
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.262-266
    • /
    • 1999
  • Several commercial companies that plan to provide improved panchromatic and/or multi-spectral remote sensor data in the near future are suggesting that merge datasets will be of significant value. This study evaluated the utility of one major merging process-process components analysis and its inverse. The 6 bands of 30$\times$30m Landsat TM data and the 10$\times$l0m SPOT panchromatic data were used to create a new 10$\times$10m merged data file. For the image classification, 6 bands that is 1st, 2nd, 3rd, 4th, 5th and 7th band may be used in conjunction with supervised classification algorithms except band 6. One of the 7 bands is Band 6 that records thermal IR energy and is rarely used because of its coarse spatial resolution (120m) except being employed in thermal mapping. Because SPOT panchromatic has high resolution it makes 10$\times$10m SPOT panchromatic data be used to classify for the detailed classification. SPOT as the Landsat has acquired hundreds of thousands of images in digital format that are commercially available and are used by scientists in different fields. After the merged, the classifications used supervised classification and neural network. The method of the supervised classification is what used parallelepiped and/or minimum distance and MLC(Maximum Likelihood Classification) The back-propagation in the multi-layer perception is one of the neural network. The used method in this paper is MLC(Maximum Likelihood Classification) of the supervised classification and the back-propagation of the neural network. Later in this research SPOT systems and images are compared with these classification. A comparative analysis of the classifications from the TM and merged SPOT/TM datasets will be resulted in some conclusions.

  • PDF

Classification System Model Design for Algorithm Education for Elementary and Secondary Students (초중등학생 대상 알고리즘 교육을 위한 분류체계 모형 설계)

  • Lee, Young-ho;Koo, Duk-hoi
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • The purpose of this study is to propose algorithm classification system for algorithm education for Elementary and Secondary Students. We defines the components of the algorithm and expresses the algorithm classification system by the analysis synthesis method. The contents of the study are as follows. First, we conducted a theoretical search on the classification purpose and classification. Second, the contents and limitations of the classification system for the proposed algorithm contents were examined. In addition, we examined the contents and selection criteria of algorithms used in algorithm education research. Third, the algorithm components were redefined using the core idea and crosscutting concept proposed by the NRC. And the crosscutting concept of algorithm is subdivided into algorithm data structure and algorithm design strategy, and its contents are presented using analytic synthesis classification scheme. Finally, the validity of the proposed contents was verified by the review of the expert group. It is expected that the study on the algorithm classification system will provide many implications for the contents selection and training method in the algorithm education.

Classification of International Container Ports by Using Principal Component Analysis and Cluster Analysis (주성분분석 및 군집분석을 이용한 컨테이너항만의 분류)

  • 문성혁;이준구
    • Journal of Korean Port Research
    • /
    • v.13 no.1
    • /
    • pp.11-26
    • /
    • 1999
  • The subject of port efficiency is one of the important issues facing port authorities and policy makers today. A number of studies have been undertaken which compare ports in terms of their efficiency. But any port comparison can only be valid and meaningful if a port’s efficiency is compared with a similar port. The main objective of this paper is to introduce a systematic approach to identifying similar ports based on the technique of principal component analysis and cluster analysis. And it seeks to identify the most important factors underlying the port classification. Lack of awareness of which factors differentiate ports has resulted in an unnecessary collection of data which are of limited use in port classification. This paper has identified five groupings of similar ports within which port comparision can be justifiably made. This approach can be used for any future port comparision.

  • PDF

Evaluation on Performance of Accuracy for Analysis and Classification of Data Related to Industrial Accidents (산업재해 데이터의 분석 및 분류를 위한 정확도 성능 평가)

  • Leem Young-Moon;Ryu Chang-Hyun
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2006.04a
    • /
    • pp.51-56
    • /
    • 2006
  • Recently data mining techniques have been used for analysis and classification of data related to industrial accidents. The main objective of this study is to compare performance of algorithms for data analysis of industrial accidents and this paper provides a comparative analysis of 5 kinds of algorithms including CHAID, CART, C4.5, LR (Logistic Regression) and NN (Neural Network) with ROC chart, lift chart and response threshold. In this study, data on 67,278 accidents were analyzed to create risk groups for a number of complications, including the risk of disease and accident. The sample for this work chosen from data related to manufacturing industries during three years $(2002\sim2004)$ in korea. According to the result analysis, NN has excellent performance for data analysis and classification of industrial accidents.

  • PDF