• Title/Summary/Keyword: Classical-Motion-Control

Search Result 40, Processing Time 0.045 seconds

The Combined Classical/Modern Technique for Optimal Fesign of Robust Motion Controller (강인한 운동제어기의 최적 설계를 위한 고전적 기법과 현대적 기법의 결합)

  • 김삼수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.485-492
    • /
    • 1990
  • This paper propose a optimal design method for robust notion controllers of under-water vehicles using the combined technique between classical and modern theories. The proposed method is presented which utilizes classical control methods to obtain a good robustness and modern control methods to set optimal gains. LQ, SVD, multivariable frequency analysis and Bode-Root Locus (BRL) plot are used.

  • PDF

Classical Controller Design of Direct Drive Servo Valve Using Analytical Bode Method (해석적 Bode 방법에 의한 직접구동형서보밸브의 고전적 제어기 설계)

  • Lee, S.R.;Choi, H.Y.;Moon, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.507-514
    • /
    • 2001
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the classical controller is designed using the analytical Bode method.

  • PDF

Classical Controller Design of Direct Drive Servo Valve Using Analytical Bode Method (해석적 Bode 방법에 의한 직접구동형서보밸브의 고전적 제어기 설계)

  • Lee, Seong-Rae;Choe, Hyeon-Yeong;Mun, Ui-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.4
    • /
    • pp.754-763
    • /
    • 2002
  • Direct drive servovalve(DDV) is a kind of one-stage valve since the rotary motion of DC motor is directly transferred to the linear motion of valve spool through the link. Since the structure of DDV is simple, it is less expensive, more reliable and offers reduced internal leakage and reduced sensitivity to fluid contamination. However, the flow force effect on the spool motion is significant such that it induces large steady-state error in a step response. If the proportional control gain is increased to reduce the steady-state error, the system becomes unstable. In order to satisfy the system design requirements, the classical controller is designed using the analytical Bode method.

A study on robot manipulator control by hand variables (핸드변수에 의한 로보트 매니퓰레이터 제어에 관한 연구)

  • 정광손;배준경;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.58-62
    • /
    • 1987
  • In this paper, path planning, modelling, and control of manipulators are described. The path planning deals with specifying how to define the motion of hand along straight line paths in the minimum amount of time. A new model was developed for the manipulator, which is based on the classical equations of motion of a rigid body. A new control algorithm was developed which controls the manipulator in terms of the position and orientation of the hand.

  • PDF

Improvement of Washout Algorithm for Vehicle Driving Simulator Using Vehicle Tilt Data and Its Evaluation (차량 기울기값을 이용한 차량 시a레이터용 워시아웃 알고리즘에 대한 개선 및 평가)

  • Moon, Young-Geun;Kim, Moon-Sik;Kim, Kyung-Dal;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.823-830
    • /
    • 2009
  • For developing automotive parts and telematics devices the real car test often shows limitation because it needs high cost, much time and has the possibility of the accident. Therefore, a Vehicle Driving Simulator (VDS) instead of the real-car test has been used by some automotive manufactures, research centers, and universities. The VDS is a virtual reality device which makes a human being feel as if one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, a washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, a classical washout algorithm contains several problems such as time delay and generation of wrong motion signal caused by characteristics of filters. Specially, the classical washout algorithm has the simulator sickness when driver hardly turns brakes and accelerates the VDS. In this paper, a new washout algorithm is developed to enhance the motion sensitivity and improve the simulator sickness by using the vehicle tilt signal which is generated in the real time vehicle dynamic model.

A New Washout Algorithm for Reappearance of Driving Perception of Simulator (운전 시뮬레이터의 주행감각 재현을 위한 새로운 가속도 모의 수법 알고리즘 개발)

  • 유기성;이민철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.6
    • /
    • pp.519-528
    • /
    • 2004
  • For reappearance of driving perception in a driving simulator, a washout algorithm is required. This algorithm can reappear the vehicle driving motions within workspace of the driving simulator. However classical washout algorithm contains several problems such as selection of order, cut-off frequency of filters, generation of wrong motion cues by characteristics of filters, etc. In order to overcome these problems, this paper proposes a new washout algorithm which gives more accurate sensations to drivers. The algorithm consists of an artificial inclination of the motion plate and human perception model with band pass filter and dead zone. As a result of this study, the motion of a real car could be reappeared satisfactorily in the driving simulator and the workspace of motion plate is restrained without scaling factor.

Adaptive Control System Designs for Aircraft Wing Rock (항공기 Wing Rock 운동에 대한 적응제어시스템 설계)

  • Shin, Yoong-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.8
    • /
    • pp.725-734
    • /
    • 2011
  • At high angles of attack, aircraft dynamics can display an oscillatory lateral behavior that manifests itself as a limit cycle known as wing rock. In this paper, a classical and neural network based adaptive control design methods of adaptively stabilizing the oscillatory motion by adapting uncertainties are described in detail. All methods are simulated and compared using a model for an 80o swept delta wing.

LOS(line-of-sight) Stabilization Control of OTM(on-the-move) Antenna Driven by Geared Flexible Transmission Mechanism (기어와 유연축을 갖는 구동계로 구동되는 OTM 안테나 시선의 안정화 제어)

  • Kang, Min-Sig;Yoon, Wo-Hyun;Lee, Jong-Bee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.10
    • /
    • pp.951-959
    • /
    • 2011
  • In this study, an OTM(on-the-move) antenna which is mounted on ground vehicles and is used for mobile communication between vehicle and satellite while moving was addressed. Since LOS(line-of-sight) of antenna should direct satellite consistently while vehicle moving to guarantee high satellite communication quality, active antenna LOS stabilization is a core technology for OTM antenna. Stabilization of a satellite tracking antenna which consists of 2-DOF gimbals, an elevation gimbal over an azimuth gimbal, was considered in this study. In consideration of driving mechanism which consists of gear train and flexible driving shafts, a two-mass-system dynamic model coupled with vehicle motion was presented. An internal PI-control loop + outer PI-control loop structure has been suggested in order to damp the torsional vibration and stabilize control system. The classical pole-placement method was applied to design control gains. In addition, a vehicle motion compensation control beside of the feedback control loop has been suggested to improve LOS stabilization performances. The feasibility of the proposed control design was verified along with some experimental results.

The Influence of 4 wks Complex Therapeutic Exercises on Visual Analog Scale of Pain and Range of Motion for Middle-Aged Women with Breast Cancer-Related Lymphedema (4주간 복합 운동치료가 유방암 림프부종 중년여성의 통증, 견관절 가동범위에 미치는 영향)

  • Lee, Byung-Ki;Lee, Jae-Sub;Kim, Tae-Soo
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.8 no.2
    • /
    • pp.153-161
    • /
    • 2013
  • PURPOSE: This study aimed to investigate the effect of complex theraputic exercise on visual analog scale of pain, shoulder' range of motion for middle-aged women with breast cancer related lymphedema. METHODS: The 14 middle-aged women involved voluntary in this study and then they were divided into two groups(n =7 per group). The complex exercise program was implemented over 4 weeks, 60 minutes per day, with 3 types of exercise for stimulation whereas the control group was performed a classical decongestive physiotherapy in a same day. For data analysis, the mean and standard deviation were estimated; 2 way repeated measures ANOVA was carried out. RESULTS: First, The level of VAS was significantly reduced on time, interaction effect in the group. Second, most factors of ROM were significantly increased on time, interaction effect whereas extension was not significantly increased. CONCLUSION: In conclusion, Our results showed that complex therapeutic exercise could improve or maintain VAS and ROM of shoulder joint for middle-aged women with breast cancer related lymphedema.

A Study on the Reconstruction of Impact Force produced by the Collision between Two Elastic Structures (탄성 충돌체간의 충격력 재현에 관한 연구)

  • 조창기;류봉조;이규섭;박영필
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.49-58
    • /
    • 2003
  • In this study, the equation of motion of impacting elastic structures was derived through the theory, and the shape control of impact force using correlations of the dynamic characteristics and impact force history between two elastic structures was accomplished. Through numerical analysis and experiments, the classical contact mechanisms were verified, and the effects of the relative motion between impactor and elastic structure on the impact force shape were studied, and then the shape change of impact force depending on the impact position and mode shape of cantilever beam were analyzed. The 2-DOF impactor was designed and used. Reconstruction characteristics of impact force in cantilever beam were reviewed .