• Title/Summary/Keyword: Classical Plate Theory

Search Result 179, Processing Time 0.026 seconds

An original HSDT for free vibration analysis of functionally graded plates

  • Sidhoum, Imene Ait;Boutchicha, Djilali;Benyoucef, Samir;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.25 no.6
    • /
    • pp.735-745
    • /
    • 2017
  • This work presents a free vibration analysis of functionally graded plates by employing an original high order shear deformation theory (HSDT). This theory use only four unknowns, which is even less than the classical HSDT. The equations of motion for the dynamic analysis are determined via the Hamilton's principle. The original kinematic allows obtaining interesting equations of motion. These equations are solved analytically via Navier procedure. The accuracy of the proposed solution is checked by comparing it with other closed form solutions available in the literature.

A novel hyperbolic plate theory including stretching effect for free vibration analysis of advanced composite plates in thermal environments

  • Elmascri, Setti;Bessaim, Aicha;Taleb, Ouahiba;Houari, Mohammed Sid Ahmed;Mohamed, Sekkal;Bernard, Fabrice;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.193-209
    • /
    • 2020
  • This paper presents a new hyperbolic shear deformation plate theory including the stretching effect for free vibration of the simply supported functionally graded plates in thermal environments. The theory accounts for parabolic distribution of the transverse shear strains and satisfies the zero traction boundary conditions on the surfaces of the plate without using shear correction factors. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The present one has a new displacement field which introduces undetermined integral variables. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume power laws of the constituents. The equation of motion of the vibrated plate obtained via the classical Hamilton's principle and solved using Navier's steps. The accuracy of the proposed solution is checked by comparing the present results with those available in existing literature. The effects of the temperature field, volume fraction index of functionally graded material, side-to-thickness ratio on free vibration responses of the functionally graded plates are investigated. It can be concluded that the present theory is not only accurate but also simple in predicting the natural frequencies of functionally graded plates with stretching effect in thermal environments.

A Study on the Stress Analysis for Design of Composite Material Shafts of Small Boats (소형 선박용 복합재료 축 설계를 위한 음력해석에 관한 연구)

  • Kim, Yun-Hae;Im, Cheol-Mun;Bae, Chang-Won;Wang, Ji-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.308-313
    • /
    • 2002
  • It is known that the composite material shafts using on small boats have various advantages comparing to forged steel shafts, fur examples, specific strength, fatigue strength, corrosion, etc. The analysis of the stresses and strains in the composite material shafts made by filament winding method is presented in this paper. The classical laminated plate theory is applied on the patch cut from the composite material hollow shafts. It is verified that the composite material hollow shafts of diameter 40 mm is the most optimum when the ratio of the inner diameter to the outer is 0.4 and winding angle is 45$^{\circ}$. It is also proven that the shear strain does not change seriously between 30$^{\circ}$and 60$^{\circ}$of winding angles. It is dangerous when the winding angle is over 75$^{\circ}$because the values of shear strain and stress produced on the shaft are too high so it must be avoided to wind the filament by the angle over 75$^{\circ}$.

A Simplified Method for Determining Modal Strain Energy Release Rate of Free-Edge Delaminations in Laminated Composite (적층복합재의 자유단 박리에 대한 모드별 스트레인 에너지해방률의 간이계산법)

  • Kim, Taek-Hyun;Oh, Taek-Yul;Kim, In-Kweon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.423-429
    • /
    • 1997
  • A simplified method for determining the mode components of the strain energy release rate of free-edge delaminations in laminated composite is proposed. The interlaminar stresses are evaluated as an interface moment and interface shear forces that are obtained from the equilibrium equations at the interface between the adjacent layers. Deformation of an edge-delaminated laminate is calculated by using a generalized quasi-three dimensional classical laminated plate theory developed by the authors. The analysis provides closed-form expression for the three components of the strain energy release rate. Comparison of results with a finite element solution using the virtual crack closure technique shows good agreement. In the present study, laminated composite with stacking sequences of [30/-30/90]$_{s}$ were examined. The simple nature of the method makes it suitable for primary design analysis for the delaminations of laminated composite.e.

Buckling behavior of rectangular plates under uniaxial and biaxial compression

  • Bourada, Mohamed;Bouadi, Abed;Bousahla, Abdelmoumen Anis;Senouci, Amel;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.113-123
    • /
    • 2019
  • In the classical stability investigation of rectangular plates the classical thin plate theory (CPT) is often employed, so omitting the transverse shear deformation effect. It seems quite clear that this procedure is not totally appropriate for the investigation of moderately thick plates, so that in the following the first shear deformation theory proposed by Meksi et al. (2015), that permits to consider the transverse shear deformation influences, is used for the stability investigation of simply supported isotropic rectangular plates subjected to uni-axial and bi-axial compression loading. The obtained results are compared with those of CPT and, for rectangular plates under uniaxial compression, a novel direct formula, similar to the conventional Bryan's expression, is found for the Euler stability stress. The accuracy of the present model is also ascertained by comparing it, with model proposed by Piscopo (2010).

A new 3-unknown hyperbolic shear deformation theory for vibration of functionally graded sandwich plate

  • Belabed, Zakaria;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Earthquakes and Structures
    • /
    • v.14 no.2
    • /
    • pp.103-115
    • /
    • 2018
  • In this work, a simple but accurate hyperbolic plate theory for the free vibration analysis of functionally graded material (FGM) sandwich plates is developed. The significant feature of this formulation is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the classical plate theory (CPT), instead of 5 as in the well-known first shear deformation theory (FSDT) and higher-order shear deformation theory (HSDT). A shear correction factor is, therefore, not required. Two common types of FGM sandwich plates are considered, namely, the sandwich with the FGM face sheet and the homogeneous core and the sandwich with the homogeneous face sheet and the FGM core. The equation of motion for the FGM sandwich plates is obtained based on Hamilton's principle. The closed form solutions are obtained by using the Navier technique. The fundamental frequencies are found by solving the eigenvalue problems. Numerical results of the present theory are compared with the CPT, FSDT, order shear deformation theories (HSDTs), and 3D solutions. Verification studies show that the proposed theory is not only accurate and simple in solving the free vibration behaviour of FGM sandwich plates, but also comparable with the higher-order shear deformation theories which contain more number of unknowns.

Buckling optimization of laminated composite plate with elliptical cutout using ANN and GA

  • Nicholas, P. Emmanuel;Padmanaban, K.P.;Vasudevan, D.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.815-827
    • /
    • 2014
  • Buckling optimization of laminated composite plates is significant as they fail because of buckling under in-plane compressive loading. The plate is usually modeled without cutout so that the buckling strength is found analytically using classical laminate plate theory (CLPT). However in real world applications, the composite plates are modeled with cutouts for getting them assembled and to offer the provisions like windows, doors and control system. Finite element analysis (FEA) is used to analyze the buckling strength of the plate with cutouts and it leads to high computational cost when the plate is optimized. In this article, a genetic algorithm based optimization technique is used to optimize the composite plate with cutout. The computational time is highly reduced by replacing FEA with artificial neural network (ANN). The effectiveness of the proposed method is explored with two numerical examples.

Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets

  • Rostami, Rasoul;Rahaghi, Mohsen Irani;Mohammadimehr, Mehdi
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.185-193
    • /
    • 2020
  • Nonlinear vibration of sandwich plate with functionally graded material (FGM) core and carbon nano tubes reinforced (CNTs) nano-composite layers by considering temperature-dependent material properties are studied in this paper. Base on Classical plate theory (CPT), the governing partial differential equations of motion for sandwich plate are derived using Hamilton principle. The Galerkin procedure and multiple scales perturbation method are used to find relation between nonlinear frequency and amplitude of vibration response. The dynamic responses of the sandwich plate are also investigated in both time and frequency domains. Then, the effects of nonlinearity, excitation, power law index of FG core, volume fraction of carbon nanotube, the function of material variations of FG core, temperature changes, scale transformation parameter and damping factor on the frequency responses are investigated.

Analytical studies on stress concentration due to a rectangular small hole in thin plate under bending loads

  • Yang, Y.;Liu, J.K.;Cai, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.6
    • /
    • pp.669-678
    • /
    • 2010
  • In general means, the stress concentration problem of elastic plate with a rectangular hole can be investigated by numerical methods, and only approximative results are derived. This paper deduces an analytical study of the stress concentration due to a rectangular hole in an elastic plate under bending loads. Base on classical elasticity theory and FEM applying the U-transformation technique, the uncoupled governing equations with 3-DOF are established, and the analytical displacement solutions of the finite element equations are derived in series form or double integral form. Therefore, the stress concentration factor can then be discussed easily and conveniently. For the plate subjected to unidirectional bending loads, the non-conforming plate bending element with four nodes and 12-DOF is taken as examples to demonstrate the application of the proposed method. The inner force distribution is obtained. The solutions are adequate for the condition when the hole is far away from the edges and the thin plate subjected to any transverse loadings.

Size-dependent analysis of functionally graded ultra-thin films

  • Shaat, M.;Mahmoud, F.F.;Alshorbagy, A.E.;Alieldin, S.S.;Meletis, E.I.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.431-448
    • /
    • 2012
  • In this paper, the first-order shear deformation theory (FSDT) (Mindlin) for continuum incorporating surface energy is exploited to study the static behavior of ultra-thin functionally graded (FG) plates. The size-dependent mechanical response is very important while the plate thickness reduces to micro/nano scales. Bulk stresses on the surfaces are required to satisfy the surface balance conditions involving surface stresses. Unlike the classical continuum plate models, the bulk transverse normal stress is preserved here. By incorporating the surface energies into the principle of minimum potential energy, a series of continuum governing differential equations which include intrinsic length scales are derived. The modifications over the classical continuum stiffness are also obtained. To illustrate the application of the theory, simply supported micro/nano scaled rectangular films subjected to a transverse mechanical load are investigated. Numerical examples are presented to present the effects of surface energies on the behavior of functionally graded (FG) film, whose effective elastic moduli of its bulk material are represented by the simple power law. The proposed model is then used for a comparison between the continuum analysis of FG ultra-thin plates with and without incorporating surface effects. Also, the transverse shear strain effect is studied by a comparison between the FG plate behavior based on Kirchhoff and Mindlin assumptions. In our analysis the residual surface tension under unstrained conditions and the surface Lame constants are expected to be the same for the upper and lower surfaces of the FG plate. The proposed model is verified by previous work.