• 제목/요약/키워드: Class Loading

검색결과 175건 처리시간 0.035초

금속 링 개스킷이 삽입된 Class 900 플랜지 조인트의 거동에 관한 연구 (A Study on the Behavior of Class 900 Flange Joints with Metal Ring Gaskets)

  • 이민영;정두형;김병탁
    • 한국기계가공학회지
    • /
    • 제17권1호
    • /
    • pp.34-41
    • /
    • 2018
  • A flange joint is a pipe connection used to prevent the leakage of high-pressure fluids by inserting a gasket and tightening the bolts. Among several kinds of gaskets available, metal ring type joint gaskets are most widely used in conditions that require high-temperature and high-pressure fluid flow, such as oil pipelines, gas pipes, pumps, valve joints, etc. The purpose of this study is to investigate the contact pressure and stress characteristics closely related to the sealing performance of Class 900 flange joints used in high temperature and high pressure environments. The dimensions of flange joints with five different nominal pipe sizes were determined with reference to those specified in ASME 16.5. The metal ring gaskets inserted in the joints were octagonal and oval gaskets. The bolt tensile forces calculated from the tightening torques were input as the bolt pretension loads in order to determine the contact pressure and stress levels after fastening. Loading was composed of three steps, including the fastening step, and different amounts of applied pressures were used in each analysis to investigate the effect of fluid pressure on the contact force of the joints. A general-purpose software, ANSYS 17.2, was used for the analysis.

Strain-based plastic instability acceptance criteria for ferritic steel safety class 1 nuclear components under level D service loads

  • Kim, Ji-Su;Lee, Han-Sang;Kim, Jong-Sung;Kim, Yun-Jae;Kim, Jin-Won
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.340-350
    • /
    • 2015
  • This paper proposes strain-based acceptance criteria for assessing plastic instability of the safety class 1 nuclear components made of ferritic steel during level D service loads. The strain-based criteria were proposed with two approaches: (1) a section average approach and (2) a critical location approach. Both approaches were based on the damage initiation point corresponding to the maximum load-carrying capability point instead of the fracture point via tensile tests and finite element analysis (FEA) for the notched specimen under uni-axial tensile loading. The two proposed criteria were reviewed from the viewpoint of design practice and philosophy to select a more appropriate criterion. As a result of the review, it was found that the section average approach is more appropriate than the critical location approach from the viewpoint of design practice and philosophy. Finally, the criterion based on the section average approach was applied to a simplified reactor pressure vessel (RPV) outlet nozzle subject to SSE loads. The application shows that the strain-based acceptance criteria can consider cumulative damages caused by the sequential loads unlike the stress-based acceptance criteria and can reduce the overconservatism of the stress-based acceptance criteria, which often occurs for level D service loads.

Using harmonic class loading for damage identification of plates by wavelet transformation approach

  • Beheshti-Aval, S.B.;Taherinasab, M.;Noori, M.
    • Smart Structures and Systems
    • /
    • 제8권3호
    • /
    • pp.253-274
    • /
    • 2011
  • In this paper, the harmonic displacement response of a damaged square plate with all-over part-through damage parallel to one edge is utilized as the input signal function in wavelet analysis. The method requires the properties of the damaged plate, i.e., no information about the original undamaged structure is required. The location of damage is identified by sudden changes in the spatial variation of transformed response. The incurred damage causes a change in the stiffness or mass of the plate. This causes a localized singularity which can be identified by a wavelet analysis of the displacement response. In this study via numerical examples shown by using harmonic response is more versatile and effective compared with the static deflection response, specially in the presence of noise. In the light of the obtained results, suggestions for future work are presented and discussed.

New phenomena associated with the nonlinear dynamics and stability of autonomous damped systems under various types of loading

  • Sophianopoulos, Dimitris S.
    • Structural Engineering and Mechanics
    • /
    • 제9권4호
    • /
    • pp.397-416
    • /
    • 2000
  • The present study deals with the nonlinear dynamics and stability of autonomous dissipative either imperfect potential (limit point) systems or perfect (bifurcational) non-potential ones. Through a fully nonlinear dynamic analysis, performed on two simple 2-DOF models corresponding to the classes of systems mentioned above, and with the aid of basic definitions of the theory of nonlinear dynamical systems, new important phenomena are revealed. For the first class of systems a third possibility of postbuckling dynamic response is offered, associated with a point attractor on the prebuckling primary path, while for the second one the new findings are chaos-like (most likely chaotic) motions, consecutive regions of point and periodic attractors, series of global bifurcations and point attractor response of always existing complementary equilibrium configurations, regardless of the value of the nonconservativeness parameter.

상호 안전성 대응 차체 전방 구조에 관한 연구 (A Study on Vehicle Frontal Structure for Crash Compatibility)

  • 신장호;김윤창;김혜연
    • 자동차안전학회지
    • /
    • 제3권2호
    • /
    • pp.11-16
    • /
    • 2011
  • In recent years, rapid-increasing market share of compact cars and SUVs has brought for both consumer and automaker to pay more attention on crash compatibility between the compact passenger vehicles and the light trucks (i.e., Pickups and SUVs). Vehicle compatibility regarding both self and partner protection in frontal crash of different class vehicles is one of hot issues in vehicle safety. Furthermore, it is expected that the amendment of UNECE-Regulation 94 to implement compatibility issues in couple of coming years. In this study, conceptual design of compatibility compliant frontal vehicle structure which subjects to improve? the distribution of frontal crash loading and structural engagement between vehicles is introduced. The effects of proposed vehicle structure on both possible candidates (i.e. FWRB, FWDB and PDB) for a compatibility evaluation test procedure and car-to-car crash are also investigated.

Determination of fracture toughness in concretes containing siliceous fly ash during mode III loading

  • Golewski, Grzegorz Ludwik
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.1-9
    • /
    • 2017
  • This paper describes laboratory tests carried out to evaluate the influence of class F fly ash (FA) on fracture toughness of plain concretes, specified at the third model fracture. Composites with the additives of: 0%, 20% and 30% siliceous FA were analysed. Fracture toughness tests were performed on axial torsional machine MTS 809 Axial/Torsional Test System, using the cylindrical specimens with dimensions of 150/300 mm, having an initial circumferential notch made in the half-height of cylinders. The studies examined effect of FA additive on the critical stress intensity factor $K_{IIIc}$. In order to determine the fracture toughness $K_{IIIc}$ a special device was manufactured.The analysis of the results revealed that a 20% FA additive causes increase in $K_{IIIc}$, while a 30% FA additive causes decrease in fracture toughness. Furthermore, it was observed that the results obtained during fracture toughness tests are convergent with the values of the compression strength tests.

Modeling and Scheduling of Cyclic Shops with Time Window Constraints

  • Seo, Jeong-Won;Lee, Tae-Eog
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2000년도 추계학술대회 및 정기총회
    • /
    • pp.161-164
    • /
    • 2000
  • A cyclic shop is a production system that repeatedly produces identical sets of jobs, called minimal part sets, in the same loading and processing sequence. We consider a version of cyclic shop where the operations are processed and unloaded within time limits, so called a time window. We model the shop using an event graph model, a class of Petri nets. To represent the time window constraint, we introduce places with negative time delays. From the shop modeling graph, we develop a linear system model based on the max- plus algebra and characterize the conditions on the existence of a stable schedule.

  • PDF

국내 연안항해용 25,000톤급 크루즈선의 개념 설계 (Conceptual Design of G/T25,000 Class Cruise Ship for Domestic Coastal Voyage in Korea)

  • 김동준;진송한;최경식;현범수
    • 한국해양공학회지
    • /
    • 제16권3호
    • /
    • pp.65-71
    • /
    • 2002
  • From the definition of the cruise ship mission based on the investigation of the customer needs and statistical estimates and to design of the residence area of the cruise ship, in this study a conceptual design of the traditional ship parts (the lower hull) was carried out. for the light weight estimation of the cruise ship, several methods that have been used for commercial ships were evaluated to adapt for the cruise ship, the main particulars of the ship were determined with the light weight estimation and the assumed dead weight. From these main particulars of the ship, the hull form was developed with CFD verification and the general arrangement for the lower hull was achieved. For several loading conditions the intact stability of ship was checked.

Emerging Frontiers of Graphene in Biomedicine

  • Byun, Jonghoe
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권2호
    • /
    • pp.145-151
    • /
    • 2015
  • Graphene is a next-generation biomaterial with increasing biomedical applicability. As a new class of one-atom-thick nanosheets, it is a true two-dimensional honeycomb network nanomaterial that attracts interest in various scientific fields and is rapidly becoming the most widely studied carbon-based material. Since its discovery in 2004, its unique optical, mechanical, electronic, thermal, and magnetic properties are the basis of exploration of the potential applicability of graphene. Graphene materials, such as graphene oxide and its reduced form, are studied extensively in the biotechnology arena owing to their multivalent functionalization and efficient surface loading with various biomolecules. This review provides a brief summary of the recent progress in graphene and graphene oxide biological research together with current findings to spark novel applications in biomedicine. Graphene-based applications are progressively developing; hence, the opportunities and challenges of this rapidly growing field are discussed together with the versatility of these multifaceted materials.

주기적 응력 발생에 따른 태양전지모듈의 전기적 특성 평가 (The Electrical Characteristics Evaluation of PV Module caused by Mechanical Stress)

  • 김경수;강기환;유권종
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1098-1099
    • /
    • 2008
  • In this paper, we study the electrical characteristics evaluation of PV module caused by mechanical stress. By observing the easy separation between glass and frame of module, we give static force on surface of PV module. Through this experiment, parallel resistance changes by varying loading stress. Also the maximum power reduction ratio is measured using class A solar simulator. The specific analysis is shown in the following paper.

  • PDF