• 제목/요약/키워드: Class F fly ash

검색결과 43건 처리시간 0.022초

Effects of Sand/Binder Ratios on the Mechanical Properties of Mortars Containing Fly ash and Silica fume

  • Park, Ki-Bong;Lee, Han-Seung
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.777-780
    • /
    • 2005
  • The paper presents details of an investigation into the effect of sand content upon the strength and shrinkage of mortar. This strategy was to produces more durable strength mortar with less cement. Cement mortars containing $20\;wt.\;\%$ Class F fly ash, and/or $6\;wt.\;\%$ silica fume were prepared at a water/binder ratio of 0.45 and sand/binder ratios of 2.0, 2.5, 2.7, and 3.0. The increase in sand/binder ratio caused a decrease in the mortar flow. However, the sand/binder ratio did not affect the strength development. Drying shrinkage decreased with increasing the sand contents.

  • PDF

Investigating the long-term behavior of creep and drying shrinkage of ambient-cured geopolymer concrete

  • Asad Ullah Qazi;Ali Murtaza Rasool;Iftikhar Ahmad;Muhammad Ali;Fawad S. Niazi
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.335-347
    • /
    • 2024
  • This study pioneers the exploration of creep and shrinkage behavior in ambient-cured geopolymer concrete (GPC), a vital yet under-researched area in concrete technology. Focusing on the influence of sodium hydroxide (NaOH) solution concentration, the research utilizes low calcium fly ash (Class-F) and alkaline solutions to prepare two sets of GPC. The results show distinct patterns in compressive strength development and dry shrinkage reduction, with a 14 M NaOH solution demonstrating a 26.5% lower dry shrinkage than the 16 M solution. The creep behavior indicated a high initial strain within the first 7 days, significantly influenced by curing conditions and NaOH concentration. This study contributes to the existing knowledge by providing a deeper understanding of the time-dependent properties of GPC, which is crucial for optimizing its performance in structural applications.

Effect of micro-silica on mechanical and durability properties of high volume fly ash recycled aggregate concretes (HVFA-RAC)

  • Shaikh, Faiz;Kerai, Sachin;Kerai, Shailesh
    • Advances in concrete construction
    • /
    • 제3권4호
    • /
    • pp.317-331
    • /
    • 2015
  • This paper presents the effect of different micro-silica (MS) contents of 5, 10 and 15 wt.% as partial replacement of cement on mechanical and durability properties of high volume fly ash - recycled aggregate concretes (HVFA-RAC) containing 50% class F fly ash (FA) and 35% recycled coarse aggregate (RCA) as partial replacement of cement and natural coarse aggregate (NCA), respectively. The measured mechanical and durability properties are compressive strength, indirect tensile strength, elastic modulus, drying shrinkage, water sorptivity and chloride permeability. The effects of different curing ages of 7, 28, 56 and 91 days on above properties are also considered in this study. The results show that the addition of MS up to 10% improved the early age (7 days) strength properties of HVFA-RAC, however, at later ages (e.g. 28-91 days) the above mechanical properties are improved for all MS contents. The 5% MS exhibited the best performance among all MS contents for all mechanical properties of HVFA-RAC. In the case of measured durability properties, mix results are obtained, where 10% and 5% MS exhibited the lowest sorptivity and drying shrinkage, respectively at all ages. However, in the case of chloride ion permeability a decreasing trend is observed with increase in MS contents and curing ages. Strong correlations of indirect tensile strength and modulus of elasticity with square root of compressive strength are also observed in HVFA-RAC. Nevertheless, it is established in this study that MS contributes to the sustainability of HVFA-RAC significantly by improving the mechanical and durability properties of concrete containing 50%less cement and 35% less natural coarse aggregates.

지상식 LNG 저장탱크용 고강도 자기충전 콘크리트의 최적배합에 관한 연구 (Optimum Mix Proportion of the High Strength and Self Compacting Concrete Used Above-Ground LNG Storage Tank)

  • 권영호
    • 콘크리트학회논문집
    • /
    • 제23권1호
    • /
    • pp.99-107
    • /
    • 2011
  • 이 연구는 대용량 지상식 LNG 저장탱크에 사용할 고강도 자기충전 콘크리트의 최적배합 조건을 도출하고, 현장적용을 위한 기본 자료를 제안하기 위한 것이다. 60~80 MPa 고강도 자기충전 콘크리트를 적용하면, 벽체두께의 감소와 자기충전성에 따른 인력절감 및 품질확보 등을 통하여 경제성을 확보할 것으로 예상된다. 시멘트 및 분체는 점성 증대 및 수화열 저감에 우수한 플라이애쉬와 저열 시멘트(벨라이트)를 사용하였다. 플라이애쉬의 치환율은 구속수비 및 배합변수 실험을 통해 정하였으며, 배합변수는 단위수량(W), 플라이애쉬 치환율(FA), 물-결합재비(W/B) 및 잔골재율(S/a)로 하여, 최적배합비 및 경제성 평가를 실시하였다. 실험 결과, 설계기준강도 60 MPa의 경우에는 단위수량 165 $kg/m^3$, 플라이애쉬 치환율 20% 및 물-결합재비 27~30%로 나타났으며, 설계기준강도 80 MPa의 경우에는 단위수량 165 $kg/m^3$, 플라이애쉬 치환율 10% 및 물-결합재비 25%로 나타났다. 또한, 기존의 설계기준강도 40 MPa과 비교해 볼 때, 압축강도 증가에 따른 재료비 상승은 60 MPa의 경우 14~22% 및 80 MPa의 경우 33%로 나타나, 현장관리 및 인력절감 등과 함께 매우 경제적인 것으로 나타났다.

Effect of Silica Fume and Slag on Compressive Strength and Abrasion Resistance of HVFA Concrete

  • Rashad, Alaa M.;Seleem, Hosam El-Din H.;Shaheen, Amr F.
    • International Journal of Concrete Structures and Materials
    • /
    • 제8권1호
    • /
    • pp.69-81
    • /
    • 2014
  • In this study, portland cement (PC) has been partially replaced with a Class F fly ash (FA) at level of 70 % to produce high-volume FA (HVFA) concrete (F70). F70 was modified by replacing FA at levels of 10 and 20 % with silica fume (SF) and ground granulated blast-furnace slag (GGBS) and their equally combinations. All HVFA concrete types were compared to PC concrete. After curing for 7, 28, 90 and 180 days the specimens were tested in compression and abrasion. The various decomposition phases formed were identified using X-ray diffraction. The morphology of the formed hydrates was studied using scanning electron microscopy. The results indicated higher abrasion resistance of HVFA concrete blended with either SF or equally combinations of SF and GGBS, whilst lower abrasion resistance was noted in HVFA blended with GGBS.

Improvement in engineering properties of subgrade soil due to stabilization and its effect on pavement response

  • Nagrale, Prashant P.;Patil, Atulya P.
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.257-267
    • /
    • 2017
  • This paper presents laboratory investigation of stabilization of subgrade soil. One type of soil and three types of stabilizers i.e., hydrated lime, class F fly ash and polypropylene fibres are selected in the study. Atterberg limit, compaction, california bearing ratio (CBR), unconfined compressive strength and triaxial shear strength tests are conducted on unstabilized and stabilized soil for varying percentage of stabilizers to analyze the effect of stabilizers on the properties of soil. Vertical compressive strains at the top of unstabilized and stabilized subgrade soil were found out by elasto-plastic finite element analysis using commercial software ANSYS. Strategy for design of optimum pavement section was based on extension in service life (TBR) and reduction in layer thickness (LTR). Extension in service life of stabilized subgrade soil is 6.49, 4.37 and 3.26 times more due to lime, fly ash and fibre stabilization respectively. For a given service life of the pavement, there is considerable reduction in layer thicknesses due to stabilization. It helps in reduction in construction cost of pavement and saving in natural resources as well.

Effect of pumice powder and artificial lightweight fine aggregate on self-compacting mortar

  • Etli, Serkan;Cemalgil, Selim;Onat, Onur
    • Computers and Concrete
    • /
    • 제27권3호
    • /
    • pp.241-252
    • /
    • 2021
  • An experimental program was conducted to investigate the fresh properties, mechanical properties and durability characteristics of the self-compacting mortars (SCM) produced with pumice powder and Artificial Lightweight Fine Aggregate (aLWFA). aLWFA was produced by using fly ash. A total of 16 different mixtures were designed with a constant water-binder ratio of 0.37, in which natural sands were partially replaced with aLWFA and pumice powder at different volume fractions of 5%, 10% and 15%. The artificial lightweight aggregates used in this study were manufactured through cold bonding pelletisation of 90% of class-F fly ash and 10% of Portland cement in a tilted pan with an ambient temperature and moisture content. Flowability tests were conducted on the fresh mortar mixtures beforehand, to determine the self-compacting characteristics on the basis of EFNARC. To determine the conformity of the fresh mortar characteristics with the standards, mini-slump and mini-V-funnel tests were carried out. Hardened state tests were conducted after 7, 28 and 56 days to determine the flexural strength and axial compressive strength respectively. Durability, sorptivity, permeability and density tests were conducted at the end of 28 days of curing time. The test results showed that the pumice powder replacement improved both the fresh state and the hardened state characteristics of the mortar and the optimum mixture ratio was determined as 15%, considering other studies in the literature. In the aLWFA mixtures used, the mechanical and durability characteristics of the modified compositions were very close to the control mixture. It is concluded in this study that mixtures with pumice powder replacement eliminated the negative effects of the aLWFA in the mortars and made a positive contribution.

A critical review of slag and fly-ash based geopolymer concrete

  • Akcaoglu, Tulin;Cubukcuoglu, Beste;Awad, Ashraf
    • Computers and Concrete
    • /
    • 제24권5호
    • /
    • pp.453-458
    • /
    • 2019
  • Today, concrete remains the most important, durable, and reliable material that has been used in the construction sector, making it the most commonly used material after water. However, cement continues to exert many negative effects on the environment, including the production of carbon dioxide (CO2), which pollutes the atmosphere. Cement production is costly, and it also consumes energy and natural non- renewable resources, which are critical for sustainability. These factors represent the motivation for researchers to examine the various alternatives that can reduce the effects on the environment, natural resources, and energy consumption and enhance the mechanical properties of concrete. Geopolymer is one alternative that has been investigated; this can be produced using aluminosilicate materials such as low calcium (class F) FA, Ultra-Fine GGBS, and high calcium FA (class C, which are available worldwide as industrial, agricultural byproducts.). It has a high percentage of silica and alumina, which react with alkaline solution (activators). Aluminosilicate gel, which forms as a result of this reaction, is an effective binding material for the concrete. This paper presents an up-to-date review regarding the important engineering properties of geopolymer formed by FA and slag binders; the findings demonstrate that this type of geopolymer could be an adequate alternative to ordinary Portland cement (OPC). Due to the significant positive mechanical properties of slag-FA geopolymer cements and their positive effects on the environment, it represents a material that could potentially be used in the construction industry.

모형옹벽실험을 이용한 폐주물사 혼합재의 지반공학 적용성 연구 (A Study on the WFS Co-mixtures by Small Scale Retaining Wall Test)

  • 조재윤;이관호;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.419-426
    • /
    • 2000
  • The purpose of this study is to present the application of WFS co-mixtures for retaining wall as flowable backfill. The fly ash, generated at the Tae-An thermoelectric power plant, was used in this research and was classified as Class F. Green Sand, Furane Sand, and Coated Sand, which had been used at a foundry located in Pusan, were used. Couple of laboratory tests and small scale retaining wall tests were performed to obtain the physical properties of the WFS co-mixtures and the possibility of backfill materials of retaining wall. The range of permeability for all the co-mixtures was from 3.0${\times}$10$\^$-3/ cm/s to 6.0${\times}$10$\^$-5/ cm/s. The unconfined strength of the 28-day cured specimens reached around 550kPa. Results of the consolidated-undrained triaxial test showed that the internal friction angle is between 33.5$^{\circ}$ and 41.8$^{\circ}$. The lateral earth pressure against wall decreased up to 80% of initial pressure within a 12 hours and the total lateral earth pressure is less than that of typical granular soil. It was enough to construct the backfill for the standard retaining of 6m with just two steps, like fill the co-mixtures for half of retaining wall, and then fill the others after 1 day. The stability of retaining wall for overturning and sliding increased as the curing time elapsed.

  • PDF

유동특성을 이용한 폐주물사 혼합물의 옹벽뒷채움재 연구 (A Study on the Flowable Backfill with Waste Foundry Sand for Retaining Wall)

  • 조재윤;이관호;이인모
    • 한국지반공학회논문집
    • /
    • 제16권4호
    • /
    • pp.17-30
    • /
    • 2000
  • 본 연구의 목적은 폐주물사-플라이애쉬 혼합재료의 옹벽 뒷채움재 이용시 옹벽에 작용하는 토압과 안정성에 대한 특성을 평가하는 것이다. 세종류의 폐주물사(생형사, 후란사, 코티드사)와 ASTM 분류 기준 F 등급의 플라이애쉬를 이용한 유동성 뒷채움재의 옹벽 적용성평가를 위해 인위적 변위제어 실험 및 자유변위제어실험을 이용하여 모형옹벽실험을 수행하였다. 인위적 변위제어실험의 경우 유동성 뒤채움의 타설 직후 토압계수의 크기는 0.8~1 사이의 값으로 나타났고, 약 12시간이 경과하면 옹벽에 작용하는 토압이 상당부분 저감되었다. 2단계 타설 방법을 적용한 자유변위실험의 경우, 슬러리 형태의 유동성 뒤채움재의 타설초기에 후란사와 코티드사 혼합재는 빠른 배수효과에 의해 토압 경감 효과가 빨리 나타났지만, 1일 후의 토압은 같은 양생시간의 생형사에 비해 크게 유지되었다. 모형실험의 자유변위제어 실험결과를 이용한 안정성 해석으로부터 6m 옹벽에 타설할 수 있는 뒤채움재의 시공단계별 1차타설 높이 및 2차타설 높이는 생형사의 경우 3.9m 및 3.57m, 후란사의 경우 4.07m 및 3.64m, 코티드사의 경우 3.86m 및 3.54m, 혼합사의 경우 3.9m 및 3.44m로 결정되었고, 실제 옹벽의 뒤채움 높이 5.4m보다 크므로 2단계 시공으로 옹벽의 뒤채움을 완공할 수 있는 것으로 판정되었다. 또한 재료의 양생특성에 따른 옹벽의 안정성은 양생기간이 경과함에 따라 더욱 증가되는 결과를 나타내었다.

  • PDF