• Title/Summary/Keyword: Clamping force

Search Result 201, Processing Time 0.044 seconds

On Clamping Force Characteristics in M1.4 Subminiature Screw for CFRP Stacking Angles (M1.4 초소형 나사의 CFRP 적층 경향에 따른 체결력 특성에 관한 연구)

  • Kim, Jung Ho;Ra, Seung Woo;Kim, Hee Seong;Kim, Ji Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.6
    • /
    • pp.517-521
    • /
    • 2015
  • Recent development of core techniques the IT electronics industry can condense into lightweight and slimmer. In this circumstance, researches for the lightweight materials and subminiature screw have been attracted. In this study, the CFRP was produced by stacking angle to obtain the tensile properties. And Comparing the coated screws and non-coated screws on the specimen, and evaluating the adequacy for the application of CFRP using the result. So The clamping force measured by comparison evaluation. Low screw reverse and Superior torque value at each stacking angle were found the optimum conditions, when Subminiature Screw is applied on smart devices. Both tensile strength and stiffness of $[{\pm}0^{\circ}]_{10}$ is the highest. Followed by $[90^{\circ}/0^{\circ}]_{10}$ is the highest. The largest clamping torque is $[90^{\circ}/0^{\circ}]_{10}$ When Subminiature Screw is applied coating and non-coating to prevent loosening. Based on the above, Subminiature Screw should be applied in smart devices, because $[90^{\circ}/0^{\circ}]_{10}$ meet both tensile properties and clamping force.

Evaluation on Clamping Force of High Strength Bolts By Coating Parameters of Faying Surfaces (고력볼트 접합부표면의 방식도장변수에 따른 체결력 평가)

  • Nah, Hwan Seon;Lee, Hyeon Ju
    • Corrosion Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.48-55
    • /
    • 2012
  • Clamping force of a high strength bolt is reduced by a certain period of time after the initial set-up. In case of special treatments on faying surfaces such as protective coating, clamping force is relaxed more severely. Tests for slip critical joints subject to various faying surface parameters were conducted. Five different surface treatments were tested including mill scale surface, blast surface, rust surface and coated surfaces. Each specimen was composed of F10T M20 of high strength bolts and steel plates. Based on the result of slip coefficient test, blast treatment surface showed 0.59, rust treatment surface showed 0.54 and inorganic zinc treatment surface exhibited 0.44. Clean mill treatment surface and red lead paint treatment surface were 0.23, 0.21 respectively. It is identified that the slip coefficient in Korean structural design guide should be determined for various surface conditions. Subsequently from long term relaxation test of ASTM A 490 high strength bolts, relaxation of no-coated surfaces such as blast, clean mill, rust treatment, the loss of initial clamping load was 10.5%, 13.6% and 7.9% for 1,000 hours, while the loss of initial clamping force was reached as 15.0%, 18.7% more than the required redundancy 10% in case of inorganic zinc and red lead painted treatment. It is required that the limit of relaxation on coated faying surface should be established separately for various surfaces.

The Effect of the Resistance of Wedge Frame on the Clamping Force of the Rail Clamp (쐐기프레임의 저항력이 레일클램프의 압착력에 미치는 영향)

  • Han Dong-Seop;Shim Jae-Joon;Lee Kwon-Hee;Han Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.355-360
    • /
    • 2006
  • The damping force of a jaw pad is determined by the displacements of main part when two lockers are locked, after the damping angle of a locker was set up in the wedge type rail damp for a container crane. In this time, of the resistance of wedge frame generates due to several factors, the damping angle of a locker to display the initial clamping force will be changed because of the reduction of displacement of extension bar. This resistance is determined by the eccentric distance between the roller and the wedge, and by the gap between the wedge frame and outer frame. In this study we measured the tensile force of both extension bar through the performance test of the prototype rail damp in order to evaluate the effect of the resistance of wedge frame on the damping force of the wedge type rail clamp.

  • PDF

A Study on the Estimation of Separation Forces of a Power Steering Hose Assembly (동력조향장치 호스 조립품의 이탈력 추정에 관한 연구)

  • Kim Hyungje;Kim Byungtak;Yoon Moonchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.4
    • /
    • pp.190-196
    • /
    • 2005
  • The power steering hose assembly is usually manufactured through the swaging process, which is conducted to connect a hose with metal fittings. In this process the hose is inserted into metal components, the sleeve and the nipple, and compressed in the radial direction by the jaws to clamp the hose with metal components. In case that the clamping force is small, the oil in the hose can leak locally under the severe operating conditions. To confirm the clamping force requirements, the measurement of separation force in longitudinal direction of the hose is usually performed. In this study, the swaging process of a hose is simulated with the finite element method, to investigate the effect of friction coefficient on the separation fDrce. The results interpretations are ffcused on the inner rubber component, and also a formula is proposed to estimate the separation farces with respect to friction coefficients.

Evaluation of Clamping Forces according to Length-to-diameter Ratios and Preserved Thread Lengths of High Strength Bolts (고력볼트의 길이-직경비 및 여유나사길이에 따른 조임력 평가 연구)

  • Kim, Sang Seup;Kim, Sung Yong;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.3 s.46
    • /
    • pp.259-268
    • /
    • 2000
  • In the friction-type joints the external applied load is transmitted by frictional force acting on the contact area of the plates fastened by the high strength bolts. This frictional force is proportional to the product of the bolt clamping force and slip coefficient of the faying surface. But the bolt clamping force is dependent on many factors when the turn-of-nut method is used. The preserved thread length and length-to-diameter ratios are one of the major factors governing the bolt clamping force. This paper presents the correct method of high strength bolt tightening through the experiment on the mechanical properties on sets of high strength bolts in accordance with preserved thread length and length-to-diameter ratios.

  • PDF

Evaluating long-term relaxation of high strength bolts considering coating on slip faying surface

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.16 no.6
    • /
    • pp.703-718
    • /
    • 2014
  • The initial clamping forces of high strength bolts subjected to different faying surface conditions drop within 500 hours regardless of loading, any other external force or loosening of the nut. This study develops a mathematical model for relaxation confined to creep on a coated faying surface after initial clamping. The quantitative model for estimating relaxation was derived from a regression analysis for the relation between the creep strain of the coated surface and the elapsed time for 744 hours. This study establishes an expected model for estimating the relaxation of bolted joints with diverse coated surfaces. The candidate bolts are dacro-coated tension control bolts, ASTM A490 bolt, and plain tension control bolts. The test parameters were coating thickness, species of coating. As for 96, 128, 168, and $226{\mu}m$ thick inorganic zinc, when the coating thickness was increased, relaxation after the initial clamping rose to a much higher range from 10% to 18% due to creep of the coating. The amount of relaxation up to 7 days exceeded 85% of the entire relaxation. From this result, the equation for creep strain can be derived from a statistical regression analysis. Based on the acquired creep behavior, it is expected that the clamping force reflecting relaxation after the elapse of constant time can be calculated from the initial clamping force. The manufacturer's recommendation of inorganic zinc on faying surface as $75{\mu}m$, appears to be reasonable.

A Brake Pad Wear Compensation Method and Performance Evaluation for ElectroMechanical Brake (전기기계식 제동장치의 제동패드 마모보상방법 및 성능평가)

  • Baek, Seung-Koo;Oh, Hyuck-Keun;Park, Choon-Soo;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.581-588
    • /
    • 2020
  • This study examined a brake pad wear compensation method for an Electro-Mechanical Brake (EMB) using the braking test device. A three-phase Interior Permanent Magnet Synchronous Motor (IPMSM) was applied to drive the actuator of an EMB. Current control, speed control, and position control were used to control the clamping force of the EMB. The wear compensation method was performed using a software algorithm that updates the motor model equation by comparing the motor output torque current with a reference current. In addition, a simple first-order motor model equation was applied to estimate the output clamping force. The operation time to the maximum clamping force increased within 0.1 seconds compared to the brake pad in its initial condition. The experiment verified that the reference operating time was within 0.5 seconds, and the maximum value of the clamping force was satisfied under the wear condition. The wear compensation method based on the software algorithm in this paper can be performed in the pre-departure test of rolling stock.

Prediction of Flash Generation in Two-Color Injection Molding using The Rapid Heat Cycle Molding Technology (금형 급속 가열-냉각이 적용된 이색사출성형의 플래쉬 발생 예측)

  • Park, H.P.;Cha, B.S.;Rhee, B.O.
    • Transactions of Materials Processing
    • /
    • v.19 no.3
    • /
    • pp.145-151
    • /
    • 2010
  • In case of thin-wall two-color injection molding, flashing often occurs when molten polymer flows into small gap at the parting line in mold with high pressure or under the unbalanced clamping force condition. In this study, flashing was examined in the production of thin-wall notebook case with large area when the rapid heat cycle molding (RHCM) technology was applied to the two-color injection molding. The effects of the RHCM technology on the part properties and weld-lines were compared with conventional injection molding. The flashing caused by the clamping device of the two-color injection molding machine was examined and compared by experiments and CAE analyses.