• Title/Summary/Keyword: Civil infrastructure

Search Result 1,488, Processing Time 0.033 seconds

Photochemical Conversion of NOX in Atmosphere by Photocatalyst Coated Mortar (광촉매 코팅한 모르타르를 이용한 대기 중 NOX의 광화학적 변환)

  • Hyeon Jin;Kyong Ku Yun;Hajin Choi;Kyo-Seon Kim
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.240-246
    • /
    • 2023
  • This study was performed to convert NOx in atmosphere by photochemical reaction utilizing the eco-friendly solar energy. The mortar specimen coated with photocatalyst was fabricated and the photochemical conversion efficiency of NOx was analyzed. The photocatalyst coated concrete was fabricated by first adding TiO2 photocatalyst on the bottom of mold first and next adding cement mortar and, then, curing the concrete mortar. The grease was sprayed on the bottom of mold in advance so that the concrete can be demolded easily after curing. The conversion efficiencies of NOx by photochemical reactions were investigated systematically by changing the process variable conditions of amount of TiO2 coating, UV-A light intensity, total gas flow rate, relative humidity and initial NOx concentration. It was confirmed that the photocatalyst coated concrete fabricated in this study could convert NOx successfully for various process conditions in atmosphere. In future, we believe this research result can be utilized as basic data to design the infrastructure of building, tunnel and road for controlling efficiently the air pollutants such as NOx, SOx, and VOCs.

Algorithm for Correcting Error in Smart Card Data Using Bus Information System Data (버스정보시스템 데이터를 활용한 교통카드 정류장 정보 오류 보정 알고리즘)

  • Hye Inn Song;Hwa Jeong Tak;Kang Won Shin;Sang Hoon Son
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.131-146
    • /
    • 2023
  • Smart card data is widely used in the public transportation field. Despite the inevitability of various errors occur during the data collection and storage; however, smart card data errors have not been extensively studied. This paper investigates inherent errors in boarding and alighting station information in smart card data. A comparison smart card data and bus boarding and alighting survey data for the same time frame shows that boarding station names differ by 6.2% between the two data sets. This indicates that the error rate of smart card data is 6.2% in terms of boarding station information, given that bus boarding and alighting survey data can be considered as ground truth. This paper propose 6-step algorithm for correcting errors in smart card boarding station information, linking them to corresponding information in Bus Information System(BIS) Data. Comparing BIS data and bus boarding and alighting survey data for the same time frame reveals that boarding station names correspond by 98.3% between the two data sets, indicating that BIS data can be used as reliable reference for ground truth. To evaluate its performance, applying the 6-step algorithm proposed in this paper to smart card data set shows that the error rate of boarding station information is reduced from 6.2% to 1.0%, resulting in a 5.2%p improvement in the accuracy of smart card data. It is expected that the proposed algorithm will enhance the process of adjusting bus routes and making decisions related to public transportation infrastructure investments.

Definition and Division in Intelligent Service Facility for Integrating Management (지능화시설의 통합운영관리를 위한 정의 및 구분에 관한 연구)

  • PARK, Jeong-Woo;YIM, Du-Hyun;NAM, Kwang-Woo;KIM, Jin-Young
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.52-62
    • /
    • 2016
  • Smart City is urban development for complex problem solving that provides convenience and safety for citizens, and it is a blueprint for future cities. In 2008, the Korean government defined the construction, management, and government support of U-Cities in the legislation, Act on the Construction, Etc. of Ubiquitous Cities (Ubiquitous City Act), which included definitions of terms used in the act. In addition, the Minister of Land, Infrastructure and Transport has established a "ubiquitous city master plan" considering this legislation. The concept of U-Cities is complex, due to the mix of informatization and urban planning. Because of this complexity, the foundation of relevant regulations is inadequate, which is impeding the establishment and implementation of practical plans. Smart City intelligent service facilities are not easy to define and classify, because technology is rapidly changing and includes various devices for gathering and expressing information. The purpose of this study is to complement the legal definition of the intelligent service facility, which is necessary for integrated management and operation. The related laws and regulations on U-City were analyzed using text-mining techniques to identify insufficient legal definitions of intelligent service facilities. Using data gathered from interviews with officials responsible for constructing U-Cities, this study identified problems generated by implementing intelligent service facilities at the field level. This strategy should contribute to improved efficiency management, the foundation for building integrated utilization between departments. Efficiencies include providing a clear concept for establishing five-year renewable plans for U-Cities.

Strategy Development for Expanding High-speed Railway into both Korean Domestic Market and Foreign Market (고속철도사업 활성화 및 건설업체의 해외사업참여 확대방향 연구)

  • Park, Heedae;Park, Hyung Keun;Jang, Hyeon Seok;Han, Seung Heon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1D
    • /
    • pp.119-126
    • /
    • 2011
  • High-speed railway raises global interests with the growing concerns on the green development and the green energy. However, since most of the infrastructure investment of Korea was focused on the highway projects for last forty years, the investment on the railway has been limited around 40~50% of that of the highway projects. In addition, due to the world economy crisis and unsatisfactory support of existing policy for the private investment project, the private investment is given a small deal of weight on the social overhead capital investment. Meanwhile, despite the world high-speed railway market is growing rapidly and the Korean contractors have won the international construction contracts over 70 billion USD, past records of railway projects are very rare. Therefore, it is required to develop strategies for encouraging private investment in the domestic market to achieve efficient high-speed railway development and for advancing into foreign high-speed railway market. This study carried out data collection and market analysis for both domestic and foreign market respectively. Through a structured questionnaire survey and expert interviews, contractors' perceptions on the high-speed railway market and needs for the government support are collected. Summary of strategies drawn from this study are as follows: 1) carrying out BTL high-speed railway projects and revising related policies; 2) upwarding incentive level for the private pre-investment projects considering the contractors' credit rating; 3) carrying out Honam-Jeju submarine railway project; 4) establishing a efficient consortium model for foreign market; 5) improving the capacity of the Korea Railway Association that support Korean contractors' foreign advancement; and 6) expand the budget for Global Infra-fund.

Proposal for improved implementation of aviation safety reporting system (항공안전보고제도 개선방안에 대한 연구)

  • Chang, Man-Heui
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.30 no.2
    • /
    • pp.337-371
    • /
    • 2015
  • In recent years, aviation safety has been facing new hazards due to the rapidly changing environment in which aircraft operation increasingly finds. Continuously increasing air traffic volume, integration of various cultures from many States, and many other changes are the causal factors of the new risks. To identify such new hazards and risks, the government of the Republic of Korea (ROK) established aviation safety reporting systems in accordance with the international standards of the Convention on International Civil Aviation. However, there are some misunderstandings by the government in operating and by the personnel who take part in these reporting systems. Everybody should understand that aviation safety reporting system is not a punitive measure but a tool for collecting data in order to improve safety. In addition, such a system can be utilized further to promote an improved awareness on the need for a proper safety culture on the part of both the government, the industry and the personnel. This paper includes studies on international standards, relevant regulations in the United States and the United Kingdom. Moreover, this paper proposes to the government of ROK several points to improve their own system, including integration of the existing reporting systems, improvement of reporting items, implementation of safety data taxonomy and the establishment of safety data protection.

Evaluating the Strategic Reaction of Labor Union Movement toward Labor Reforms: The Two National Centers' Reaction toward Park, Guen-Hye Government's Labor Market Restructuring (노동개혁국면에 있어 노조운동의 대응전략에 관한 평가: 박근혜정부의 노동시장 구조개혁에 대한 양노총의 대응을 중심으로)

  • Lee, Byoung-Hoon
    • 한국사회정책
    • /
    • v.23 no.1
    • /
    • pp.1-23
    • /
    • 2016
  • This study evaluates the strategic capacity of Korean labor union movement by examining policy alternatives and strategic steps that the Federation of Korean Trade Unions and the Korean Confederation of Trade Unions have shown in response to Park Geun-Hye government's labor market structuring policies. While the government-led labor reform was carried out as intended, organized labor has not simply failed to achieve progressive labor reforms to enhance employment security, but also to exert their strategic capacity effectively for preventing Park's labor market flexibilization policies. The two national centers have not been able to exert their strategic capacity (such as intermediating, framing, articulating, learning) for mobilizing the resources of internal solidarity, network embeddedness, narrative discourse, and organizational infrastructure. In particular, the formation and diffusion of public discourse is a significant part of strategic capacity of labor unions dealing with the labor politics of labor market restructuring, since organized labor, which is under the unfavorable constraints of limited movement resources and power imbalance with the business circle, needs to mobilize massive support and participation from union members and civil society organizations. In this light, it becomes of more importance for labor union movement to exert their strategic capacity toward internal solidarity and network embeddedness in the stage of labor market reforms. Under the recent stage of labor reforms, however, the labor unions has not harnessed their movement resources effectively, but undertaken their protest in a traditional manner, thereby losing its public efficacy from inside and outside. Moreover, it is necessary to build and activate the network of organic solidarity among organized labor, civil society organizations and progressive political parties, in order to cope with the pro-business coalition of power elites for accomplishing pro-labor reforms.

Installation Standards of Urban Deep Road Tunnel Fire Safety Facilities (도심부 대심도 터널의 방재시설 설치 기준에 관한 연구(부산 승학터널 사례를 중심으로))

  • Lee, Soobeom;Kim, JeongHyun;Kim, Jungsik;Kim, Dohoon;Lim, Joonbum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.6
    • /
    • pp.727-736
    • /
    • 2021
  • Road tunnel lengths are increasing. Some 1,300 tunnels with 1,102 km in length had been increased till 2019 from 2010. There are 64 tunnels over 3,000 m in length, with their total length adding up to 276.7 km. Safety facilities in the event of a tunnel fire are critical so as to prevent large-scale casualties. Standards for installing disaster prevention facilities are being proposed based on the guidelines of the Ministry of Land, Infrastructure and Transport, but they may be limited to deep underground tunnels. This study was undertaken to provide guidelines for the spacing of evacuation connection passages and the widths of evacuation connection doors. Evacuation with various spacing and widths was simulated in regards to evacuation time, which is the measure of safety, using the evacuation analysis simulation software EXODUS Ver.6.3 and the fire/smoke analysis software SMARTFIRE Ver.4.1. Evacuation connection gates with widths of 0.9 m and 1.2 m, and spacings of 150 m to 250 m, were set to every 20 m. In addition, longitudinal slopes of 6 % and 0 % were considered. It was determined to be safe when the evacuation completion time was shorter than the delay diffusion time. According to the simulation results, all occupants could complete evacuation before smoke spread regardless of the width of the evacuation connection door when the longitudinal slope was 6 % and the interval of evacuation connection passage was 150 m. When the evacuation connection passage spacing was 200 m and the evacuation connection gate width was 1.2 m, all occupants could evacuate when the longitudinal slope was 0 %. Due to difference in evacuation speed according to the longitudinal slope, the evacuation time with a 6 % slope was 114 seconds shorter (with the 190 m connection passage) than with a 0 % slope. A shorter spacing of evacuation connection passages may reduce the evacuation time, but this is difficult to implement in practice because of economic and structural limitations. If the width of the evacuation junction is 1.2 m, occupants could evacuate faster than with a 0.9 m width. When the width of a connection door is 1.2 m with appropriate connection passage spacing, it might provide a means to increase economic efficiency and resolve structural limitations while securing evacuation safety.

A study on the effect of ground conditions of room and pillar method on pillar and room strain (격자형 지하공간의 지반조건이 암주와 룸 변형률에 미치는 영향에 대한 연구)

  • Ham, Hyeon Su;Kim, Yong Kyu;Park, Chi Myeon;Lee, Chul Ho;Kim, YoungSeok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.577-587
    • /
    • 2021
  • Room and Pillar method is an underground facility construction method that maximizes the strength of the in-situ ground. In order to secure the safety of the underground space, it is necessary to secure the safety of the room actually used in addition to the safety of pillar of the room and Pillar method. In this study, the evaluation method for the safety of the room and rock pillar in the room and pillar method was studied through numerical analysis. Numerical analysis was performed for a total of 125 cases using ground conditions, pillar width, and room width as parameters, and the results were derived. As for the safety factor of the pillar, it was confirmed that the safety factor increased when the strength of the ground increased, and it was confirmed that the increment in the safety factor decreased when the width of the pillar was widened. The room strain was evaluated by applying the Critical strain. As the width of the pillar became narrower, the Critical strain was higher, and as the width of the room became smaller, the Critical strain was smaller. As a result of the correlation analysis between the safety factor of the pillar and the room strain, it was possible to derive the upper limit of the room strain that can secure the standard safety factor of the pillar according to the width of the pillar. It is judged that the results derived from this study can be used as a guideline to secure the safety of the room when the actual design is performed in consideration of the ground conditions and room width.

Evaluation for applicability of river depth measurement method depending on vegetation effect using drone-based spatial-temporal hyperspectral image (드론기반 시공간 초분광영상을 활용한 식생유무에 따른 하천 수심산정 기법 적용성 검토)

  • Gwon, Yeonghwa;Kim, Dongsu;You, Hojun
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.4
    • /
    • pp.235-243
    • /
    • 2023
  • Due to the revision of the River Act and the enactment of the Act on the Investigation, Planning, and Management of Water Resources, a regular bed change survey has become mandatory and a system is being prepared such that local governments can manage water resources in a planned manner. Since the topography of a bed cannot be measured directly, it is indirectly measured via contact-type depth measurements such as level survey or using an echo sounder, which features a low spatial resolution and does not allow continuous surveying owing to constraints in data acquisition. Therefore, a depth measurement method using remote sensing-LiDAR or hyperspectral imaging-has recently been developed, which allows a wider area survey than the contact-type method as it acquires hyperspectral images from a lightweight hyperspectral sensor mounted on a frequently operating drone and by applying the optimal bandwidth ratio search algorithm to estimate the depth. In the existing hyperspectral remote sensing technique, specific physical quantities are analyzed after matching the hyperspectral image acquired by the drone's path to the image of a surface unit. Previous studies focus primarily on the application of this technology to measure the bathymetry of sandy rivers, whereas bed materials are rarely evaluated. In this study, the existing hyperspectral image-based water depth estimation technique is applied to rivers with vegetation, whereas spatio-temporal hyperspectral imaging and cross-sectional hyperspectral imaging are performed for two cases in the same area before and after vegetation is removed. The result shows that the water depth estimation in the absence of vegetation is more accurate, and in the presence of vegetation, the water depth is estimated by recognizing the height of vegetation as the bottom. In addition, highly accurate water depth estimation is achieved not only in conventional cross-sectional hyperspectral imaging, but also in spatio-temporal hyperspectral imaging. As such, the possibility of monitoring bed fluctuations (water depth fluctuation) using spatio-temporal hyperspectral imaging is confirmed.

Analysis of Optimal Locations for Resource-Development Plants in the Arctic Permafrost Considering Surface Displacement: A Case Study of Oil Sands Plants in the Athabasca Region, Canada (지표변위를 고려한 북극 동토 지역의 자원개발 플랜트 건설 최적 입지 분석: 캐나다 Athabasca 지역의 오일샌드 플랜트 사례 연구)

  • Taewook Kim;YoungSeok Kim;Sewon Kim;Hyangsun Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.275-291
    • /
    • 2023
  • Global warming has made the polar regions more accessible, leading to increased demand for the construction of new resource-development plants in oil-rich permafrost regions. The selection of locations of resource-development plants in permafrost regions should consider the surface displacement resulting from thawing and freezing of the active layer of permafrost. However, few studies have considered surface displacement in the selection of optimal locations of resource-development plants in permafrost region. In this study, Analytic Hierarchy Process (AHP) analysis using a range of geospatial information variables was performed to select optimal locations for the construction of oil-sands development plants in the permafrost region of southern Athabasca, Alberta, Canada, including consideration of surface displacement. The surface displacement velocity was estimated by applying the Small BAseline Subset Interferometric Synthetic Aperture Radar technique to time-series Advanced Land Observing Satellite Phased Array L-band Synthetic Aperture Radar images acquired from February 2007 to March 2011. ERA5 reanalysis data were used to generate geospatial data for air temperature, surface temperature, and soil temperature averaged for the period 2000~2010. Geospatial data for roads and railways provided by Statistics Canada and land cover maps distributed by the North American Commission for Environmental Cooperation were also used in the AHP analysis. The suitability of sites analyzed using land cover, surface displacement, and road accessibility as the three most important geospatial factors was validated using the locations of oil-sand plants built since 2010. The sensitivity of surface displacement to the determination of location suitability was found to be very high. We confirm that surface displacement should be considered in the selection of optimal locations for the construction of new resource-development plants in permafrost regions.