• Title/Summary/Keyword: Civil engineering work

Search Result 2,037, Processing Time 0.03 seconds

An Experimental Study on Concrete Bond Behavior According to Grid Spacing of CFRP Grid Reinforcement (격자형 CFRP 보강재의 격자간격에 따른 콘크리트 부착거동에 대한 실험적 연구)

  • Noh, Chi-Hoon;Jang, Nag-Seop;Oh, Hongseob
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.73-81
    • /
    • 2022
  • Recently, as the service life of structures increased, the load-carrying capacity of deteriorated reinforced concrete, where corrosion of reinforcing bars occurs due to various causes, is frequently decreased. In order to address this problem, many studies on the bond characteristic of FRP (Fiber Reinforced Polymer) bars with corrosion resistance, light weight and high tensile strength have been conducted, however there are not many studies on the bond characteristic of grid-typed CFRP embedded in concrete. Therefore, in order to evaluate the bond characteristics of grid-typed CFRP and its usability as a substitute for steel rebar, a pull-out test is performed using the longitudinal bond length and transverse grid length of the grid-typed CFRP as variables. Through the pull-out test, the bond load-slip curve of the grid-typed CFRP is derived, and the bond behavior is analyzed. The total bond load equation is proposed as the sum of the bond force of the longitudinal bond length and the shear force of the grid in the transverse direction. Also, expressing the area of the bond load-slip curve as total work, the change in dissipated energy with respect to the slip is analyzed to examine the effect of the tranverse grid on the bond force.

A Study on the Methods to Improve High-Wave Reproducibility during Typhoon (태풍 내습 시의 고파 재현성 개선방안 연구)

  • Jong-Dai, Back;Kyong-Ho, Ryu;Jong-In, Lee;Weon-Mu, Jeong;Yeon-S., Chang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.177-187
    • /
    • 2022
  • This study estimates the design wave in the event of a typhoon attack at Busan new port using the wind field, the revised shallow water design wave estimation method proposed by the Ministry of Oceans and Fisheries in 2020, and proposed a reliable method of calculating the shallow water design through verification with the wave observation data. As a result of estimating typhoon wave using the wind field and SWAN numerical model, which are commonly used in the field work, for typhoon that affected Busan new port, it was found that reproducibility was not good except typhoons KONG-REY(1825) and MAYSAK(2009). In particular, in the case of typhoon MAEMI(0314), which had the greatest impact on Busan new port, the maximum significant wave height was estimated to be about 35.0% smaller than that of the observed wave data. Therefore, a plan to improve the reproducibility of typhoon wave was reviewed by applying the method of correcting the wind field and the method of using the Boussinesq equation numerical model, respectively. As a result of the review, it was found that the reproducibility of the wind field was not good as before when the wind field correction. However as a method of linking wind field data, SWAN model results, and Boussinesq numerical model, typhoon wave was estimated during typhoon MAEMI(0314), and the maximum significant wave was similar to the wave observations, so it was reviewed to have good reproducibility.

The Development of 10 kW Class Tidal Power Generator System - Focusing on Field Experiments with Pipelines (10 kW급 조력발전장치 개발 - 관수로 현장실험을 중심으로)

  • HyukJin Choi;Nam-Sun Oh;Dong-Hui Ko;Shin Taek Jeong
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • Along with the growing interest in renewable energy development, Korea's west coast is one of the favorable regions for tidal power. Tidal power using tidal barrages that work like hydroelectric dams is a representative method of tidal power through long-term operation, but the promotion of tidal power projects is being delayed or stopped due to impacts on ecological changes, reproduction, water column processes and hydrology. In order to reduce the high construction cost and environmental cost problems caused by tidal power using tidal barrages, in this study, field experiments were conducted to develop and verify the performance of tidal power generation devices applicable to sea areas where dykes are already installed. As a result of conducting five cases of experiments using two water tanks, pipe lines, open channels, and water turbine and generator, the possibility of developing a power generation system capable of generating more than 10 kW output and more than 60% efficiency were confirmed. The results of this study can be used for small-scale tidal power by utilizing the existing dykes of the west coast.

A Comparative Analysis of Construction Labor Productivity in OECD Countries (OECD 국가의 건설업 노동생산성 비교 및 분석)

  • Park, Hwan-Pyo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.175-185
    • /
    • 2023
  • Upon analyzing labor productivity in the construction industry across OECD countries, it was found that in 2019, labor productivity per employee in the South Korean construction industry was lower than that of major developed countries when adjusted for purchasing power parity(PPP). Specifically, when benchmarked against other countries at a base of 100, South Korea scored 76.9 in the United States, 88.4 in Japan, and 85.1 in the OECD average. Notably, South Korea ranked 25th in labor productivity per employee in the construction industry among 35 OECD countries in 2019, indicating a low standing. A comparative analysis of the construction market size and labor productivity in the construction industry across OECD countries revealed that larger construction markets did not necessarily correlate with higher labor productivity. To enhance labor productivity in the construction industry, this study proposed the active implementation of smart construction technology at construction sites and the promotion of on-site assembly work using off-site construction(OSC) technology, rather than traditional on-site labor. Moreover, it was recommended that the development of modular construction methods and technologies be expanded. In the future, if off-site production methods and modules are further developed through advanced robotics and factory automation, labor productivity is anticipated to increase due to the restructuring of production methods, such as manufacturing.

3D Architecture Modeling and Quantity Estimation using SketchUp (스케치업을 활용한 3D 건축모델링 및 물량산출)

  • Kim, Min Gyu;Um, Dae Yong
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.6
    • /
    • pp.701-708
    • /
    • 2017
  • The construction cost is estimated based on the drawings at the design stage and constructor will find efficient construction methods for budgeting and budgeting appropriate to the budget. Accurate quantity estimation and budgeting are critical to determining whether the project is profitable or not. However, since this process is mostly performed depending on manpower or 2D drawings, errors are likely to occur and The BIM(Build Information Modeling) program, which can be automated, is very expensive and difficult to apply in the field. In this study, 3D architectural modeling was performed using SketchUp which is a 3D modeling software and suggest a methodology for Quantity Estimation. As a result, 3D modeling was performed effectively using 2D drawings of buildings. Based on the modeling results, it was possible to calculate the difference of the quantity estimation by 2D drawing and 3D modeling. The research suggests that the 3D modeling using the SketchUp and the calculation of the quantity can prevent the error of the conventional 2D calculation method. If the applicability of the research method is verified through continuous research, it will contribute to increase the efficiency of architectural modeling and quantity Estimation work.

The Quality Control Method in the Laboratory Analysis of Aquatic Ecosystem Health Monitoring and Assessment: Permanent Mounting Slides Tool Development Using Benthic Attached Diatoms. (수생태계 건강성 조사·평가를 위한 실내분석 정도관리 방법: 부착돌말류 영구표본 분석도구 개발)

  • Jae-Ki Shin;Nan-Young Kim;Yongeun Park;Kyung-Lak Lee;Baik-Ho Kim;Yong-Jae Kim;Han-Soon Kim;Jung Ho Lee;Hak Young Lee;Soon-Jin Hwang
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.196-206
    • /
    • 2023
  • Benthic attached diatoms (BADs), a major primary producer in lotic stream and river ecosystems are micro-sized organisms and require a highly magnified microscopic technique in the observation work. Thus, it is often not easy to ensure accuracy and precision in both qualitative and quantitative analyses. This study proposed a new technique applicable to improve quality control of aquatic ecosystem monitoring and assessment using BADs. In order to meet the purpose of quality control, we developed a permanent mounting slide technique which can be used for both qualitative and quantitative analyses simultaneously. We designed specimens with the combination of grid on both cover and slide glasses and compared their efficiency. As a result of observation and counting of BADs, the slide glass designed with the color-lined grid showed the highest efficiency compared to other test conditions. We expect that the method developed in this study could be effectively used to analyze BADs and contributed to improve the quality control in aquatic ecosystem health monitoring and assessment.

A Prediction of N-value Using Artificial Neural Network (인공신경망을 이용한 N치 예측)

  • Kim, Kwang Myung;Park, Hyoung June;Goo, Tae Hun;Kim, Hyung Chan
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.457-468
    • /
    • 2020
  • Problems arising during pile design works for plant construction, civil and architecture work are mostly come from uncertainty of geotechnical characteristics. In particular, obtaining the N-value measured through the Standard Penetration Test (SPT) is the most important data. However, it is difficult to obtain N-value by drilling investigation throughout the all target area. There are many constraints such as licensing, time, cost, equipment access and residential complaints etc. it is impossible to obtain geotechnical characteristics through drilling investigation within a short bidding period in overseas. The geotechnical characteristics at non-drilling investigation points are usually determined by the engineer's empirical judgment, which can leads to errors in pile design and quantity calculation causing construction delay and cost increase. It would be possible to overcome this problem if N-value could be predicted at the non-drilling investigation points using limited minimum drilling investigation data. This study was conducted to predicted the N-value using an Artificial Neural Network (ANN) which one of the Artificial intelligence (AI) method. An Artificial Neural Network treats a limited amount of geotechnical characteristics as a biological logic process, providing more reliable results for input variables. The purpose of this study is to predict N-value at the non-drilling investigation points through patterns which is studied by multi-layer perceptron and error back-propagation algorithms using the minimum geotechnical data. It has been reviewed the reliability of the values that predicted by AI method compared to the measured values, and we were able to confirm the high reliability as a result. To solving geotechnical uncertainty, we will perform sensitivity analysis of input variables to increase learning effect in next steps and it may need some technical update of program. We hope that our study will be helpful to design works in the future.

A Study of Feasibility of Dipole-dipole Electric Method to Metallic Ore-deposit Exploration in Korea (국내 금속광 탐사를 위한 쌍극자-쌍극자 전기탐사의 적용성 연구)

  • Min, Dong-Joo;Jung, Hyun-Key;Park, Sam-Gyu;Chon, Hyo-Taek;Kwak, Na-Eun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.250-262
    • /
    • 2008
  • In order to assess the feasibility of the dipole-dipole electric method to the investigation of metallic ore deposit, both field data simulation and inversion are carried out for several simplified ore deposit models. Our interest is in a vein-type model, because most of the ore deposits (more than 70%) exist in a vein type in Korea. Based on the fact that the width of the vein-type ore deposits ranges from tens of centimeters to 2m, we change the width and the material property of the vein, and we use 40m-electrode spacing for our test. For the vein-type model with too small width, the low resistivity zone is not detected, even though the resistivity of the vein amounts to 1/300 of that of the surrounding rock. Considering a wide electrode interval and cell size used in the inversion, it is natural that the size of the low resistivity zone is overestimated. We also perform field data simulation and inversion for a vein-type model with surrounding hydrothermal alteration zones, which is a typical structure in an epithermal ore deposits. In the model, the material properties are assumed on the basis of resistivity values directly observed in a mine originated from an epithermal ore deposits. From this simulation, we can also note that the high resistivity value of the vein does not affect the results when the width of the vein is narrow. This indicates that our main target should be surrounding hydrothermal alteration zones rather than veins in field survey. From these results, we can summarize that when the vein is placed at the deep part and the difference of resistivity values between the vein and the surrounding rock is not large enough, we cannot detect low resistivity zone and interpret the subsurface structures incorrectly using the electric method performed at the surface. Although this work is a little simple, it can be used as references for field survey design and field data Interpretation. If we perform field data simulation and inversion for a number of models and provide some references, they will be helpful in real field survey and interpretation.

Impact Evaluation of Water Footprint on Stages of Drainage Works (배수공 각 작업 단계별 물발자국 영향평가)

  • Chen, Di;Kim, Joon-Soo;Batagalle, Vinuri;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.225-231
    • /
    • 2020
  • Fresh water that can be used by a person of the total amount of water on the planet is increased because it is less than 0.01 % except underground water, ice and snow, etc. water management response need. In order to protect and efficiently utilize water resources, major countries are conducting water footprint studies that can quantitatively estimate the amount of water put into the operating phase of the resource harvesting phase, mainly agriculture. Korea has also recently developed a number of policies in order to cope with water shortages, and in the construction industry, as well as the need for basic research to support it has been emphasized. This study was constructed DB up to the raw material harvesting step, the transport step, the production stage in order to estimate the water consumption of resources to be put into the work process to target the drainage of the road. Water usage estimation method was utilized the method presented in the Water Footprint Manual and the environmental score card certification guide, unit water usage each drainage main method was calculated after estimating the water footprint considering the water character factor, indirect water and the direct water, the water consumption factor of material input to each process. Brown asphalt, rebar, remicon of the drainage material as a result of the water footprint calculation accounted for 97 % of the total. Drainage method is a culvert, a side channel, a culvert wing wall, reinforced concrete open channel accounted for 92.2 % of the total. Drainage total step-by-step calculated water consumption and water footprint was found in order of raw material harvesting step, transport stage, production stage. Water footprint each drainage method or total drainage material calculated in this study can be used as a base data in the agricultural and construction sectors. In order to increase the reliability of the analysis, it is believed that further overseas databases will be needed for continuous review and research.

Basic Study for Selection of Factors Constituents of User Satisfaction for Micro Electric Vehicles (초소형전기차 사용자만족도 구성요인 선정을 위한 기반연구)

  • Jin, Eunju;Seo, Imki;Kim, Jongmin;Park, Jejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.581-589
    • /
    • 2021
  • With the recent increase in the introduction of micro-electric vehicles in Korea, interest in micro-electric vehicle user satisfaction is increasing to revitalize related markets. In this paper, a basic study was conducted on the development of public services using micro-electric vehicle based on the constituent factors of user satisfaction. The survey includes: ① 'Analytic Hierarchy Process (AHP) for selecting the priority factors of user satisfaction of micro-electric vehicles', ② 'A survey of micro-electric vehicles image' to collect data in advance for providing users' preferences and transportation services for micro-electric vehicles, ③ In order to investigate the user satisfaction level of users who actually operated micro-electric vehicles, the order of 'user satisfaction survey of micro-electric vehicle drivers' was conducted. In the Analytic Hierarchy Process (AHP) analysis, it was found that users regarded as important in the order of 'user utilization data', 'vehicle movement data', and 'charging service data'. In the micro-electric vehicle image survey, users perceived micro-electric vehicles more positively in terms of "safety", 'durability', 'Ride comfort', 'design', 'MOOE (Maintenance and other operating expense)', and 'environment-friendly' when comparing micro-electric vehicles with electric motorcycles. In the survey on the user satisfaction of micro-electric vehicle drivers, the use of micro-electric vehicle did not directly affect work performance efficiency, and there was an experience of being disadvantaged on the road due to the size of the micro-electric vehicle, and driving in a cluster of micro-electric vehicle for outdoor advertisements. The city's public relations effect was great, but it was concerned about safety. In the future, based on the results of this study, we plan to build a user satisfaction structural equation model, preemptively discover feedback R&D for micro-electric vehicle utilization services in the public field, and actively seek to discover new public mobility support services.