• Title/Summary/Keyword: Civil Society

Search Result 18,071, Processing Time 0.04 seconds

Stability Analysis According to the Shape of Assembled Earth Retaining Wall by the Field Model Tests and 3D-Numerical Analysis (현장모형실험과 3D 수치해석을 통한 AER 조립식 지주옹벽의 형태에 따른 안정성 분석)

  • Seo, Minsu;Im, Jong-Chul;Son, Su Won;Kim, Hong-Sun;Choi, Jung-Hyun;Kim, Changyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.17-30
    • /
    • 2017
  • There are many limitations for ensuring structural stability of retaining wall. Especially, L-shaped retaining wall and gravity retaining wall need large space, and massive concrete, respectively. Assembled Earth Retailing (AER) wall was developed to overcome the shortcomings. In this paper, stability of AER wall is verified by field model tests and the 3D-numerical analysis. The results show that horizontal displacement of AER wall was reduced by maximum 67.84% for conventional retaining walls, and earth pressure acting on the retaining wall was reduced by maximum 73.19%.

Effects of Nitrate Ions on Advanced Oxidation of UV/H2O2 for 2,4-Dichlomphenol Degradation (UV/H2O2를 이용한 2,4-DCP의 산화에 NO3- 이온이 미치는 영향)

  • Park, Jae Han;Lee, Ji Yong;Ahn, Yoon Hee;Moon, Tae Hoon;Yim, Sung Kyun;Ko, Kwang Baik
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.319-323
    • /
    • 2007
  • The Advanced Oxidation Process (AOP) is being increasingly used to oxidize complex organic constituents in treated effluents from domestic wastewater treatment plants. Generally, ${NO_3}^--N$ concentrations ranges between 5 and 8 mg/L for biologically well-treated effluents. However, nitrate ions, ${NO_3}^-$, affects on oxidation as not only a well-known strong absorber of UV light below 250 nm of wavelength but also as an OH radical scavenger. The objective of this study was to evaluate the AOP systems for degradation of 2,4-DCP, and to delineate the effect of nitrate ions on UV oxidation of 2,4-DCP by conducting a bench-scale operation at various reaction times and initial concentrations of $H_2O_2$. The experimental results indicated that 2,4-DCP could be completely oxidized by $UV/H_2O_2$ process with an initial $H_2O_2$ concentration of 20 mg/L at a retention time of 1.0 min or longer. Nitrate ions did not show any adverse effect on 2,4-DCP oxidation at this high $H_2O_2$ concentration, and the practical initial $H_2O_2$ concentration and reaction time for the 80% oxidation turned out to be 5 mg/L and 1.0 min, respectively.

A Study on the Prediction of Civil Construction Cost on Apartment Housing Projects at the Early Stage (사업 초기단계에서 공동주택 토목공사비의 예측에 관한 연구)

  • Ha, Kyu-Soo;Lee, Jin-Kyoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.9
    • /
    • pp.4284-4293
    • /
    • 2012
  • At the early construction project stage, the most important task is to estimate planned construction costs analyzed with detailed information. Therefore, in this study, Apartment Housing Projects at the Early Stage of Civil Construction Cost of the reasonable and accurate predictions of the Regression analysis to 170 of actual Construction Cost, and dependent variable regression to Civil Construction Cost, location based national land area based on a combination of private land, union land, public land to the use of predictive models by various analyses of the ease and accuracy. As a result, Civil Construction Cost of Apartment Housing Projects by the regression formula for the error rate estimates in national land predictive model 15.59%, private land predictive model 17.53%, union land predictive model 21.86%, public land predictive model 13.08%.

Evaluation of Early-age Properties of Controlled Low Strength Material Using Non-destructive Testing (비파괴 기법을 이용한 유동성 채움재의 초기경화특성 평가)

  • Kim, Dong-Ju;Kim, Sang-Cheol;Han, WooJin;Lee, Jong-Sub;Byun, Yong-Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.2
    • /
    • pp.31-38
    • /
    • 2020
  • Controlled Low Strength Material (CLSM) has high fluidity and self-compaction characteristics. CLSM is mainly used for backfilling the excavated road. Early-age properties of CLSM should be characterized for fast restoration of the road. In this study, shear wave monitoring and Vicat needle test are performed to investigate the early-age properties of CLSM depending on the setting time. CLSM consists of CSA cement, fly ash, silt and sand, accelerator, and water. Five fly ashes with different chemical properties are used for CLSM samples. The penetration of CLSM along setting time is obtained through the Vicat needle test. A pair of bender elements are placed in a mold for shear wave measurement, and the change in shear waves with the setting time is monitored. The experimental results show that, regardless of the type of fly ash, the penetration depth decreases and the shear wave velocity increases with the setting time. Depending on the type of fly ash, initial and final times and shear wave velocity change. After testing, the correlation between penetration and shear wave velocity is obtained with high coefficient of determination. The shear wave measurement technique using the bender element can be used to identify early-age properties.

Analysis of Erosion in Debris Flow Experiment Using Terrestrial LiDAR (지상 LiDAR를 이용한 토석류 실험의 침식량 분석)

  • Won, Sangyeon;Lee, Seung Woo;Paik, Joongcheol;Yune, Chan-Young;Kim, Gihong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.309-317
    • /
    • 2016
  • Debris flows are rapidly flowing masses of water mixed with soil and gravel from landslides which are caused by typhoons or rainstorms. The combination of Korea’s mountain dominated topography (70%) and seasonal heavy rains and typhoons causes landslides and large-scale debris flows from June to August. These phenomena often cause property damage and casualties that amount up to 20% of total annual disaster fatalities. The key point to predicting debris flow is to understand its movement mechanism, erosion, and deposition. In order to achieve a more accurate estimation of debris flow path and damage, this study incorporates quantitative analysis of high resolution LiDAR DEM (GSD 10cm) to delineate geomorphic and topographic changes induced by Jinbu real scale debris flow test.

Influence of Measurements of Lathe Scrap on the Characteristics of Fiber Reinforced Cementitious Composites (섬유보강 시멘트 복합체의 특성에 미치는 선반 스크랩 규격의 영향)

  • Kwon, Soon-Oh;Bae, Su-Ho;Lee, Hyun-Jin;Kim, Sung-Wook;Park, Jung-Jun
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.70-76
    • /
    • 2015
  • It should be noted that the use of the lathe scrap for making fiber reinforced cementitious composites(FRCCs) raised friendly environmental effect as well as economy because the lathe scrap is a by-product of steel manufactures and is occurred when lathe and milling works of them are conducted to process steel manufactures. Thus, the purpose of this research is to investigate the effect of measurements of lathe scrap on the characteristics of FRCCs. For this purpose, various lathe scraps were collected from processing plants of metal, and then these were processed 10mm, 20mm, and 40mm in lengths for 2mm and 4mm in widths, respectively. FRCCs containing lathe scraps were made according to their widths and lengths, and then characteristics such as the workability, compressive strength, and flexural strength of those were evaluated. As a result, it was observed from the test results that the optimum measurements of the lathe scrap for manufacturing FRCCs was 2mm in width and 40mm in length.

Resistance against Chloride Ion and Sulfate Attack of Cementless Concrete (무시멘트 콘크리트의 염소이온 침투 및 황산염 침투 저항성)

  • Lee, Hyun-Jin;Bae, Su-Ho;Kwon, Soon-Oh;Lee, Kwang-Myong;Jeon, Jun-Tai
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.2
    • /
    • pp.63-69
    • /
    • 2015
  • It has been well known that concrete structures exposed to chloride and sulfate attack environments lead to significant deterioration in their durability due to chloride ion and sulfate ion attack. The purpose of this experimental research is to evaluate the resistance against chloride ion and sulfate attack of the cementless concrete replacing the cement with ground granulated blast furnace slag. For this purpose, the cementless concrete specimens were made for water-binder ratios of 40%, 45%, and 50%, respectively and then this specimens were cured in the water of $20{\pm}3^{\circ}C$ and immersed in fresh water, 10% sodium sulfate solution for 28 and 91 days, respectively. To evaluate the resistance to chloride ion and sulfate attack for the cementless concrete specimens, the diffusion coefficient for chloride ion and compressive strength ratio, mass change ratio, and length change ratio were measured according to the NT BUILD 492 and JSTM C 7401, respectively. It was observed from the test results that the resistance against chloride ion and sulfate attack of the cemetntless concrete were comparatively largely increased than those of OPC concrete with decreasing water-binder ratio.

Installation and Safety Evaluation of Tracking-type Floating PV Generation Structure (추적식 수상 태양광발전 구조물의 시공 및 안전성 평가)

  • Jang, Min-Jun;Kim, Sun-Hee;Lee, Young-Geun;Woo, Sang-Byock;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Pultruded glass fiber reinforced polymeric plastic (PFRP) and FRP member manufactured by sheet molding compound (SMC) have superior mechanical and physical properties compared with those of conventional structural materials. Since FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of floating-type photovoltaic (PV) power generation system. In this paper, advanced floating PV generation system made of PFRP and SMC is designed. In the design, it includes tracking solar altitude by tilting photovoltaic arrays and tracking solar azimuth by spinning structures. Moreover, the results of the finite element analysis (FEA) are presented to confirm stability of entire structure under the external loads. Additionally, installation procedure and mooring systems in the Hap-Cheon Dam are discussed and the measurement of strain under the actual circumstances is conducted for assuring stability of actually installed structures. Finally, by comparison with allowable stress, appropriate safety of structure is confirmed to operate the system.

A Study on Analytical Model of Fish-bone Girder Pier (연안역 조립식 경골잔교(Fish-bone Girder Pier)의 해석모델에 관한 연구)

  • Kim, Hwa-Rang;Lim, Nam-Hyoung;Park, Jong-Sup;Yun, Kyung-Min;Yoon, Ki-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.12
    • /
    • pp.6527-6533
    • /
    • 2013
  • A fish-bone girder pier affects torsion severely because of the one girder system. This study was performed to develop an analytical model to analyze and design a fish-bone girder pier properly. This model consisted of a beam element with 7-degrees of freedom considering the warping rigidity. Several beam-column connection conditions were considered. The static load test was performed using a real size specimen. The validity of this model was tested by a comparison of the analytical results with the experimental results. This analytical model is useful for designing the bolt connection of a Spine girder.

A Study of the Effect of Imperfection on Buckling Strength in Thin Cylindrical Shells under Bending (초기결함의 영향성을 고려한 원통형 쉘의 휨 좌굴 강도 연구)

  • Jang, Min-Seo;Park, Jong-Sup;Lee, Yun-Woo;Kang, Soung-Yong;Kang, Young-Jong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2263-2271
    • /
    • 2015
  • The thin cylindrical shell structure under compression should be checked with buckling stability. Initial imperfection effects on buckling strength has been investigated by many researchers. Even though there have been a number of these studies, more studies of buckling strength with various initial imperfections are still necessary. In Eurocode, there is a design parameter that is applicable only on specific imperfection by section thickness rather than on various initial imperfection. In this study, structural analyses, using geometry and material nonlinear analysis, of cylindrical buckling strength with various initial imperfection were performed and compared with Eurocode design strength and Finite Element Method (FEM) analysis results. Moreover, the modified design parameter, which gives more exact prediction result of buckling strength under bending with initial imperfection, is proposed for various initial imperfections.