• Title/Summary/Keyword: Civil Society

Search Result 18,071, Processing Time 0.04 seconds

Behaviour of Shallow Foundations Subjected to Blast Loads and Related Liquefaction

  • Ritika, Sangroya;Choudhury, Deepankar;Park, Young Jin;Shin, Eun Chul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.10
    • /
    • pp.5-14
    • /
    • 2017
  • In recent years, world has witnessed many man-made activities related to both above and underground blasts. Details on behaviour of shallow foundations subjected to blast loads and induced liquefaction is scarce in literature. In this paper, typical shallow strip foundation in saturated cohesionless soils subjected to both above and underground blasting have been simulated by using finite difference based numerical model FLAC3D. Peak particle velocity (PPV) has been obtained to propose critical values for which bearing capacity failure for shallow foundations with soil liquefaction can occur. Typical results for pore pressure ratio (PPR) for various scaled distances are compared to PPR values obtained by using empirical equation available in literature which shows good agreement. Critical design values obtained in the present study for PPV and PPR to estimate the scaled distance, bearing capacity failure and liquefaction susceptibility can be used effectively for design of shallow strip foundation in cohesionless soil subjected to both above and under ground blast loads.

Interface Shear Strength Between Soil and Woven Geotextile (흙-직포간의 접촉면 전단강도 산정)

  • Youn, Choo-Moon;An, Hyun-Ho;Seo, Byoung-Wook;Lee, Seok-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.3
    • /
    • pp.25-30
    • /
    • 2006
  • Large-scale direct shear tests were conducted in order to evaluate both the shear strength of soil itself and the interface shear strength between soil and woven geotextile. Two types of soil (sand and clay) with a woven geotextile were used in the experimental program. Total nine tests were conducted in this study. It has been found from the experimental results that the friction angle of sand itself were $30^{\circ}$. Interface friction angle between woven geotextile and sand showed $26^{\circ}$ indicating an efficiency of 87%. Similarly, interface friction angle between woven geotextile and clay showed $7.7^{\circ}$.

  • PDF

Image Fusion Methods for Multispectral and Panchromatic Images of Pleiades and KOMPSAT 3 Satellites

  • Kim, Yeji;Choi, Jaewan;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.413-422
    • /
    • 2018
  • Many applications using satellite data from high-resolution multispectral sensors require an image fusion step, known as pansharpening, before processing and analyzing the multispectral images when spatial fidelity is crucial. Image fusion methods are to improve images with higher spatial and spectral resolutions by reducing spectral distortion, which occurs on image fusion processing. The image fusion methods can be classified into MRA (Multi-Resolution Analysis) and CSA (Component Substitution Analysis) approaches. To suggest the efficient image fusion method for Pleiades and KOMPSAT (Korea Multi-Purpose Satellite) 3 satellites, this study will evaluate image fusion methods for multispectral and panchromatic images. HPF (High-Pass Filtering), SFIM (Smoothing Filter-based Intensity Modulation), GS (Gram Schmidt), and GSA (Adoptive GS) were selected for MRA and CSA based image fusion methods and applied on multispectral and panchromatic images. Their performances were evaluated using visual and quality index analysis. HPF and SFIM fusion results presented low performance of spatial details. GS and GSA fusion results had enhanced spatial information closer to panchromatic images, but GS produced more spectral distortions on urban structures. This study presented that GSA was effective to improve spatial resolution of multispectral images from Pleiades 1A and KOMPSAT 3.

Direct Runoff Simulation using CN Regression Equation for Bocheong Stream (유출곡선지수 회귀식을 이용한 보청천유역의 직접유출 모의연구)

  • Kwak, Jae Won;Kim, Soo Jun;Yin, Shan hua;Kim, Hung Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.4
    • /
    • pp.590-597
    • /
    • 2010
  • NRCS Curve Number (CN) method is widely used for practical purposes in the field by engineers and researchers to calculate direct runoff from total rainfall. However, CN is obtained from antecedent moisture condition and soil characteristics and so it has some problems due to its uncertainty. Therefore this study estimated CN of a watershed using asymptotic CN method which can estimate CN by rainfall and runoff data and compared the result with representative CN given by WAMIS. And we performed runoff simulation for rainy season of Bocheong stream by CN regression equation. From the result, we showed that it could be more reasonable to simulate direct runoff using watershed CN regression equation than WAMIS CN. Furthermore, we knew that the equation is more sensitive to small rainfall event.

A Development of Washoff Model for Suspended Solids in Urban Areas (도시유역의 부유고형물 유출평가를 위한 쓸림모형 개발)

  • Joo, Jingul;Jung, Donghwi;Kim, Joonghoon;Park, Moojong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.5
    • /
    • pp.789-795
    • /
    • 2010
  • Suspended Solid (SS) is one of the main pollutants and discharges with attached other pollutants such as heavy metal and toxic substance. It is very important to estimate and forecast the release characteristics of SS for water quality improvement. The current studies assumed that SS release rate is proportional to the rain intensity and suggested exponential washoff models. These models related to the shear force of flow. In this study, a new washoff model is suggested based on relation with SS release rate and mean flow rate of the basin surface which is closely related to the shear force. The proposed model is applied to the Goonja drainage district in Seoul, Korea. The new washoff model simulates the SS discharge more accurately in the various rainfall types. The model can be widely applied to the real problems such as the management of non-point source pollutant and the design of treatment facilities.

Prediction of Long-Term behavior of polyethylene pipe buried underground (지중매설 폴리에틸렌 관의 장기거동 예측)

  • Lee, Jae-Ho;Kim, Bin;Yoon, Soo-Hyun;Kim, Eung-Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • Most of existing buried pipes are composed of reinforced concrete. Reinforced concrete pipes have many problems such as aging, corrosion, leaking, etc. The polyethylene (PE) pipes have advantages to solve these problems. The plastic pipes buried underground are classified into a flexible pipe. National standard that has limited the long-term vertical deformation of the pipe to 5% for flexible pipes including PE pipe. This study presents a prediction for the long-term behavior of the polyethylene pipe based on ASTM D 5365. This prediction method is presented to estimate by using the statistical method from the initial deflection measurement data. We predict the behavior of long-term performance on the double-wall pipe and multi-wall pipe. As a result, it was found that the PE pipe will be sound enough more than 50 years if the compaction of soil around the pipe is more than 95% of the standard soil compaction density.

The Strength Characteristic of Soil Cemented Mixed with Oyster Shells and Loess (굴패각과 황토를 혼합한 소일시멘트의 강도특성)

  • Lee, Jin-Soo;Lee, Kang-Il;Kim, Chan-Kee;Kim, Hang-Gyu;Kim, Tae-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.527-532
    • /
    • 2010
  • Soil-cement has been broadly used for eco friendly pavement, slope protection and soft soil improvement since it used for the increase of soil strength with cement. Recently, additional agents are mixed with existing soil-cement so as to improve specific properties or functions such as strength, color and permeability of it. This study aims at figuring out the physical and mechanical properties of a soil-cement mixed with crashed oyster shell and loess. The study is specially focused on the applicability of oyster shell as an alternative material for sands. To have his objective achieved a series of uniaxial compression tests were conducted. As a result, it appears that usage of oyster shell may have effect on strength improvement of mixed soils.

  • PDF

A study on thermal behavior of energy textile by performing in-situ thermal response test and numerical simulation (현장 열응답 시험과 수치해석을 통한 터널에 적용된 에너지 텍스타일의 열적 거동 연구)

  • Lee, Chul-Ho;Park, Moon-Seo;Min, Sun-Hong;Jeoung, Jae-Hyeung;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.325-335
    • /
    • 2010
  • A new geothermal energy source obtained from a tunnel structure has been studied in this paper. The geothermal energy is extracted through a textile-type ground heat exchanger named "Energy Textile" that is installed between a shotcrete layer and a guided drainage geotexitle. A test bed was constructed in an abandoned railway tunnel to verify the geothermal heat exchanger system performed by the energy textile. To evaluate the applicability of the energy textile, we measured the thermal conductivity of shotcrete and lining samples which were prepared in accordance with a common mixture design. An overall performance of the energy textile installed in the test bed was evaluated by carrying out a series of in-situ thermal response test. In addition, a 3-D finite volume analysis (FLUENT) was adopted to simulate the operation of the ground heat exchanger being encased in the energy textile with the consideration of the effect of the shotcrete and lining thermal conductivity.

  • PDF

Numerical Modeling of 1g Shaking Table Model Pile Tests for Evaluating Dynamic Soil-Pile Interaction (지반-말뚝 동적 상호 작용 평가를 위한 1g 진동대 실험의 수치 모델링)

  • Oh, Man-Kyo;Kim, Seong-Hwan;Han, Jin-Tae;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.173-183
    • /
    • 2010
  • Numerical analysis using a three dimensional finite element program(ABAQUS) is a powerful method which can evaluate the soil-pile-structure interaction under the dynamic loading and reduce the computation time significantly, but has not be widely used because modeling a soil-pile system and setting the parameter for the entire model are difficult and a three dimensional finite element program is not user friendly. However, a three dimensional finite element program is expected to be widely used because of advance in research of modeling technique and development of the modeling and visualization. In this study, ABAQUS is used to simulate the 1g shaking table model pile test, and the numerical results are compared with the 1g shaking table test results. The application about the soil stiffness and boundary condition change is estimated and then parametric study for various input acceleration amplitudes, various input frequencies, and various surcharge is carried out.

  • PDF

Performance of Soil-Bentonite Cutoff Wall considering Defects and Formation of Bentonite Cake

  • Nguyen, The Bao;Lee, Chul-Ho;Lim, Jee-Hee;Jeoung, Jae-Hyeung;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1264-1273
    • /
    • 2010
  • Soil-bentonite cutoff walls are widely recognized to be the effective barrier for containment of wastes and groundwater. Bentonite cake is usually found remaining on the trench surface due to the use of bentonite slurry during the excavation for the cutoff wall construction. Defects also inevitably take place due to the inappropriate construction procedures or improperly mixed soil-bentonite backfill. The defects include insufficient keys and windows in the soilbentonite cutoff wall. In this study, the performance of the soil-bentonite cutoff wall is evaluated based on the flow rates through the wall. Three-dimensional numerical models were applied to simulate the groundwater flow through the soil-bentonite cutoff walls of typical geometries with consideration of the defects and bentonite cake. Results of the simulations showed that the bentonite cake has no effect in the insufficient key cases. In the keyed wall cases, the bentonite cake with very low hydraulic conductivity significantly impedes the flow of groundwater through the wall. The presence of the bentonite cake not only compromises the window defect but also renders the wall construction more effective in blocking the groundwater flow. These findings show the significance of the bentonite cake in a soil-bentonite cutoff wall construction.

  • PDF