• 제목/요약/키워드: Civil Movement

검색결과 584건 처리시간 0.024초

Infrastructure and Leading Commodity Identification on Poverty Alleviation in Buru Regency, Indonesia

  • WAHYUNINGSIH, Tri;MATDOAN, Arsad;SAING, Zubair
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권12호
    • /
    • pp.1205-1214
    • /
    • 2020
  • The poverty level in Buru Regency is still high, despite the relatively stable economic growth. For this reason, the purpose of this study was to (1) Identify the leading commodity in each district in Buru Regency; (2) Analyze the effect of road infrastructure and leading commodities on poverty. The findings show that the most sparsely populated district is Fena Leisela, with mangoes as the leading commodity. Pineapple, langsat, apple rose, cabbages, cashews, coffee, cashew, melon, and watermelon are the leading products in Air Buaya, Batabual, Waplau, Lolong Guba, Lilialy, Waelata, Namlea, Kaiely Bay, and Waeapo, respectively. Additionally, the results also indicate that road infrastructure and leading commodities have a significant effect on poverty alleviation in Buru Regency. It means that improving infrastructure and increasing leading commodities production reduce poverty in the region. Good road infrastructure can promote connectivity between regions so that it can accelerate and expand economic development. The provision of infrastructure that encourages connectivity will reduce transportation costs and logistics costs to increase product competitiveness and accelerate the economic movement. When the road infrastructure in Buru Regency improves and new roads are built, it can improve transportation access, it will reduce the living cost for the poor and increase income, and open up opportunities for the poor to benefit from economic growth.

Development of a distributed hydrological model considering hydrological change

  • Kim, Deasik;An, Hyunuk;Jang, Minwon;Kim, Seongjoon
    • 농업과학연구
    • /
    • 제45권3호
    • /
    • pp.521-532
    • /
    • 2018
  • In recent decades, the dry stream phenomena of small and medium sized rivers have been attracting much attention as an important social problem. To prevent dry stream phenomena, it is necessary to build an infrastructure that manages rivers. To accurately determine the progress of dry stream phenomena, it is necessary to continuously measure the discharge and other hydrological factors for small and medium sized rivers. However, until now, the flow data for small and medium rivers in Korea has been insufficient. To overcome the lack of supporting data for supporting rational decision-making in policy and project implementation, a short- and long-term hydrological model was developed that takes into consideration hydrological changes such as the increase of the impervious area due to urban development and groundwater pumping, the construction of a large-scale sewage treatment plant, the maintenance of stream-oriented rivers, etc. In the developed model, the distributed grid is represented by three layers: Surface flow, interflow, and groundwater flow. The surface flow and intermediate flow flowed along the flow direction, and the groundwater flow was calculated by a two-dimensional groundwater analysis model such that the outflow occurred in all directions without a specific flow direction. The effects of land use and cover on evapotranspiration and infiltration and the effects of multiple landscapes can be simulated in the developed model.

동전기법에 의한 폐 중금속광산 퇴적토 내의 비소제거 특성 (Removal Characteristics of Arsenic from Abandoned Metal Mining Tailings by Electrokinetic Technique)

  • 신현무;윤삼석
    • 한국환경과학회지
    • /
    • 제15권3호
    • /
    • pp.279-286
    • /
    • 2006
  • Electrokinetic technique was considered in removing arsenic from the abandoned mining tails. In order to estimate the removal characteristics of arsenic, the sequential extraction analysis and desorption experiment were carried out prior to the application of electrokientic process. The result of sequential extraction analysis indicated that the water soluble and exchangeable fraction, easily leachable to ground water, were very low as much as about 2.5% and the fraction except residual (38.3%), possibly extractable under very acidic or alkalic environment, was about 59%. In the result of desorption test using four different kinds of electrolytes, the mixture of citric acid and sodium dodecyl sulfate (SDS) showed the highest desorption efficiency as much as 77.3%. The removal efficiencies of arsenic from mining tailings by electrokinetic process under the different electrolyte environments were slightly low and resulted in the following order: citric acid + SDS (18.6%) > 0.1 $NHNO_3$ (8.1%) > HAc (7.4%) > Distilled water(6.6%). Also, arsenic in soil matrix was moved favorably in the direction of anodic rather than cathodic region, which is opposite trend with cationic metal ions generally existing in soil, because anionic form of arsenic is dominated in acidic soil caused by the movement of acid front form anode.

Differences in Network-Based Kernel Density Estimation According to Pedestrian Network and Road Centerline Network

  • Lee, Byoungkil
    • 한국측량학회지
    • /
    • 제36권5호
    • /
    • pp.335-341
    • /
    • 2018
  • The KDE (Kernel Density Estimation) technique in GIS (Geographic Information System) has been widely used as a method for determining whether a phenomenon occurring in space forms clusters. Most human-generated events such as traffic accidents and retail stores are distributed according to a road network. Even if events on forward and rear roads have short Euclidean distances, network distances may increase and the correlation between them may be low. Therefore, the NKDE (Network-based KDE) technique has been proposed and applied to the urban space where a road network has been developed. KDE is being studied in the field of business GIS, but there is a limit to the microscopic analysis of economic activity along a road. In this study, the NKDE technique is applied to the analysis of urban phenomena such as the density of shops rather than traffic accidents that occur on roads. The results of the NKDE technique are also compared to pedestrian networks and road centerline networks. The results show that applying NKDE to microscopic trade area analysis can yield relatively accurate results. In addition, it was found that pedestrian network data that can consider the movement of actual pedestrians are necessary for accurate trade area analysis using NKDE.

FRONTAL IMPACT FINITE ELEMENT MODELING TO DEVELOP FRP ENERGY ABSORBING POLE STRUCTURE

  • Elmarakbi, A.M.;Sennah, K.M.
    • International Journal of Automotive Technology
    • /
    • 제7권5호
    • /
    • pp.555-564
    • /
    • 2006
  • The aim of this paper is to contribute to the efficient design of traffic light poles involved in vehicle frontal collisions by developing a computer-based, finite-element model capable of capturing the impact characteristics. This is achieved by using the available non-linear dynamic analysis software "LS-DYNA3D", which can accurately predict the dynamic response of both the vehicle and the traffic light pole. The fiber reinforced polymer(FRP) as a new pole's material is proposed in this paper to increase energy absorption capabilities in the case of a traffic pole involved in a vehicle head-on collision. Numerical analyses are conducted to evaluate the effects of key parameters on the response of the pole embedded in soil when impacted by vehicles, including: soil type(clay and sand) and pole material type(FRP and steel). It is demonstrated from the numerical analysis that the FRP pole-soil system has favorable advantages over steel poles, where the FRP pole absorbed vehicle impact energy in a smoother behavior, which leads to smoother acceleration pulse and less deformation of the vehicle than those encountered with steel poles. Also, it was observed that clayey soil brings a slightly more resistance than sandy soil which helps reducing pole movement at ground level. Finally, FRP pole system provides more energy absorbing leading to protection during minor impacts and under service loading, and remain flexible enough to avoid influencing vehicle occupants, thus reducing fatalities and injuries resulting from the crash.

Mitigation of seismic collision between adjacent structures using roof water tanks

  • Mahmoud, Sayed
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.171-184
    • /
    • 2020
  • The potential of using the roof water tanks as a mitigation measure to minimize the required separation gap and induced pounding forces due to collisions is investigated. The investigation is carried out using nonlinear dynamic analysis for two adjacent 3-story buildings with different dynamic characteristics under two real earthquake motions. For such analysis, nonlinear viscoelastic model is used to simulate forces due to impact. The sloshing force due to water movement is modelled in terms of width of the water tank and the instantaneous wave heights at the end wall. The effect of roof water tanks on the story's responses, separation gap, and magnitude and number of induced pounding forces are investigated. The influence of structural stiffness and storey mass are investigated as well. It is found that pounding causes instantaneous acceleration pulses in the colliding buildings, but the existence of roof water tanks eliminates such acceleration pulses. At the same time the water tanks effectively reduce the number of collisions as well as the magnitude of the induced impact forces. Moreover, buildings without constructed water tanks require wider separation gap to prevent pounding as compared to those with water tanks attached to top floor under seismic excitations.

AE/MS 모니터링시스템개발과 적용연구 (Development of AE/MS monitoring system and its application)

  • 천대성;정용복;박찬;신중호;장현익
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.199-210
    • /
    • 2008
  • Acoustic emission(AE)/Microseimsic(MS) activities are low-energy seismic events associated with a sudden inelastic deformation such as the sudden movement of existing fractures, the generation of new fractures or the propagation of fractures. These events rapidly increase before major failure and happen within a given rock volume and radiate detectable seismic waves. The main difference between AE and MS signals is that the seismic motion frequencies of AE signals are higher than those of MS signals. As the failure of geotechnical structures usually happens as a high velocity and small displacement, it is not easy to determine the precursor and initiation stress level of failure in displacement detection method. To overcome this problem, AE/MS techniques for detection of structure failure and damage have recently adopt in civil engineering. In this study, AE/MS monitoring system, which consist of sensor, data acquisition and operation program, is constructed with domestic technology. To verify and optimize the developed system, we are now carrying out the field application at an underground research laboratory and the developed AE/MS monitoring will be used in detecting of seismic events with various scales.

  • PDF

Effect on Dynamic Behavior of Group Piles with Changing Thickness of Pile Cap

  • Jeong, Kusic;Ahn, Sangro;Kim, Seongho;Ahn, Kwangkuk
    • 한국지반환경공학회 논문집
    • /
    • 제19권7호
    • /
    • pp.5-11
    • /
    • 2018
  • Instead of a single pile, group piles are usually used for the pile foundation. If the earthquake occurs in the ground where group piles are installed, dynamic behavior of group piles are affected not only by interaction of piles and the ground movement but also by the pile cap. However, in Korea, the pile cap influence is not taken account into the design of group piles. Research on dynamic behavior of group piles has been performed only to verify interaction of piles and the ground and has not considered the pile cap as a factor. In this research, 1g shaking table model tests were performed to verify the thickness of the pile cap affects dynamic behavior of group piles that were installed in the ground where the earthquake would occur. The test results show that, as thickness of the pile cap increased, acceleration and horizontal displacement of the pile cap decreasd while vertical displacement of the pile cap increased. The results also showed that, among the group files tested, acceleration, horizontal displacement, and vertical displacement of the bearing pile are smaller than those of the friction pile.

Usability of inclinometers as a complementary measurement tool in structural monitoring

  • Pehlivan, Huseyin;Bayata, Halim Ferit
    • Structural Engineering and Mechanics
    • /
    • 제58권6호
    • /
    • pp.1077-1085
    • /
    • 2016
  • In the last few years, many structural monitoring studies have been performed using different techniques to measure structures of different scales such as buildings, dams or bridges. One of the mostly used tools are GPS instruments, which have been utilized in various combinations with accelerometers and some other conventional sensors. In the current study, observation series were recorded for 8 hours with GPS receivers (NovAtel) and Inclination Measurement Sensors mounted on a television tower in Istanbul, Turkey. Each series of observations collected from two different sensors were transformed into a single coordinate system (Local Topocentric Coordinates System). The positional changes of the tower were calculated from the GPS and the inclination data. These changes were plotted in two dimensions (2D) on the same graphic. Thus, the possibility of comparison and analysis were found using the data from both the GPS and the Inclinometer complement each other, in the real test area. The positional changes of the tower were modeled for further examination. As a result, the movement of the tower within an area of $1{\times}1cm^2$ was observed. Based on the results, it can be concluded that inclinometers can be used for monitoring the structural behavior of the tower.

Investigation of Soil and Groundwater Contaminated by Gasoline and Lubricants Around a Railroad Station in S City, Korea

  • Lee, Hwan;Lee, Yoonjin
    • 한국환경보건학회지
    • /
    • 제38권6호
    • /
    • pp.529-540
    • /
    • 2012
  • Objective: This research was performed to evaluate the state of oil pollution in an area surrounding a railway station that has over 100 years of business history as a railway station in S City, Korea. The amount of polluted soil was estimated, and the target area for remediation was assessed in this study to restore the oil-polluted area. Methods: To accomplish this aim, five observation wells were installed for the sampling of groundwater, and soil was sampled at 33 points. Electric resistance studies and a trench investigation were undertaken to understand the geological conditions of the site, and the groundwater movement in this area was simulated by MODFLOW. Physiochemical analyses were conducted to determine the quality of the groundwater and the current state of oil pollution influenced by that of the soil. Results: The mean level of total petroleum hydrocarbons (TPHs) in this area was 1,059 mg/kg, and the area for remediation was determined to be 7,610 mg/kg. Levels of benzene, toluene, ethylbenzene, and xylene (BTEX) were determined to be under the legal standard. Conclusion: In terms of depth, the biggest area polluted by TPH found was between 0 and 1 m from ground level, and the affected area was 5,900 $m^3$. TPHs were not detected in groundwater. Diesel and lubricating oil were the main causes of TPH pollution at this railway station.