• Title/Summary/Keyword: Civil Engineering and Construction Fields

Search Result 158, Processing Time 0.026 seconds

In-situ Self-calibration of Non-metric Camera and Digital Stereo Plotting for Public Survey (공공측량 적용을 위한 비측정용 카메라의 현장자체검정 및 수치 입체 도화)

  • Seo, Sang-Il;Lee, Byoungkil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.3
    • /
    • pp.145-154
    • /
    • 2017
  • In recent years, demand for 1 / 1,000 digital map production has increased in various fields such as construction and urban planning. As a result, the use of low-cost non-metric cameras that replace expensive aerial photogrammetry equipment is required. In Korea, researches are being continuously carried out to produce a large scale digital map by photographing a small target area with a non-metric camera. However, due to the limitation of the accuracy of the non-metric camera, it is difficult to do digital mapping with stereoscopic photographs. In this study, we tried to verify the possibility of large-scale digital mapping to utilize non-metric camera for public survey. For this purpose, the accuracy of the digital mapping results of the non-metric camera and the results of the DMC camera were compared and analyzed. After performing in-situ self-calibration including 8 standard additional parameters, we plotted to a scale of 1/1,000 and confirmed that the RMSE is suitable for public survey accuracy of ${\pm}0.145m$ in horizontal and ${\pm}0.153$ m in vertical.

Study on the Crack and Thermal Degradation of GFRP for UPE Gelcoat Coated Underground Pipes Under the High Temperature Water-Immersion Environment (고온 수침 환경에서 UPE 겔코트 코팅된 지중 매설 파이프용 GFRP의 열화 및 크랙 발생 특성에 관한 연구)

  • Kim, Daehoon;Eom, Jaewon;Ko, Youngjong;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.169-177
    • /
    • 2018
  • Glass fiber reinforced polyester (GFRP) composites are widely used as structural materials in harsh environment such as underground pipes, tanks and boat hulls, which requires long-term water resistance. Especially, these materials might be damaged due to delamination between gelcoat and composites through an osmotic process when they are immersed in water. In this study, GFRP laminates were prepared by surface treatment of UPE (unsaturated polyester) gelcoat by vacuum infusion process to improve the durability of composite materials used in underground pipes. The composite surface coated with gelcoat was examined for surface defects, cracking, and hardness change characteristics in water-immersion environments (different temperatures of $60^{\circ}C$, $75^{\circ}C$, and $85^{\circ}C$). The penetration depth of cracks was investigated by micro CT imaging according to water immersion temperature. It was confirmed that cracks developed into the composites material at $75^{\circ}C$ and $85^{\circ}C$ causing loss of durability of the materials. The point at which the initial crack initiated was defined as the failure time and the life expectancy at $23^{\circ}C$ was measured using the Arrhenius equation. The results from this study is expected to be applied to reliability evaluation of various industrial fields where gelcoat is applied such as civil engineering, construction, and marine industry.

Roughness Analysis of Paved Road using Drone LiDAR and Images (드론 라이다와 영상에 의한 포장 노면의 평탄성 분석)

  • Jung, Kap Yong;Park, Joon Kyu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.55-63
    • /
    • 2021
  • The roughness of the road is an important factor directly connected to the ride comfort, and is an evaluation item for functional evaluation and pavement quality management of the road. In this study, data on the road surface were acquired using the latest 3D geospatial information construction technology of ground LiDAR, drone photogrammetry, and drone LiDAR, and the accuracy and roughness of each method were analyzed. As a result of the accuracy evaluation, the average accuracy of terrestrial LiDAR were 0.039m, 0.042m, 0.039m RMSE in X, Y, Z direction, and drone photogrammetry and drone LiDAR represent 0.072~0.076m, 0.060~0.068m RMSE, respectively. In addition, for the roughness analysis, the longitudinal and lateral slopes of the target section were extracted from the 3D geospatial information constructed by each method, and the design values were compared. As a result of roughness analysis, the ground LiDAR showed the same slope as the design value, and the drone photogrammetry and drone LiDAR showed a slight difference from the design value. Research is needed to improve the accuracy of drone photogrammetry and drone LiDAR in measurement fields such as road roughness analysis. If the usability through improved accuracy can be presented in the future, the time required for acquisition can be greatly reduced by utilizing drone photogrammetry and drone LiDAR, so it will be possible to improve related work efficiency.

Accuracy Evaluation of 3D Slope Model Produced by Drone Taken Images (드론 촬영으로 작성한 비탈면 3차원 모델의 품질 분석)

  • Kang, Inkyu;Kim, Taesik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.6
    • /
    • pp.13-17
    • /
    • 2020
  • In the era of the fourth industrial revolution, drones are being used in various civil engineering fields. Currently, the construction and maintenance of slopes are generally managed by manpower. This method has a risk of safety accidents, and it is difficult to accurately evaluate the slope because it is difficult to secure the vision. In this paper, the effects of RTK and GCP on the 3D model of the slope were studied by using digital images taken by the drone. GNSS coordinates were measured for nine points to compare the quality of the slope 3D model, three points of which were used as the check points and the remaining points were used as GCPs. When making the 3D model of the slope using high-accuracy geotagging images using RTK, it was found that the error at the check point decreases as the number of GCP increases. Even if GNSS was used, it was found that the error at the check points of the 3D slope model was not significant when the GCPs were applied. However, it was found that even if high-accuracy geotagging images are used using the RTK module, a significant error occur when the 3D slope model is created without applying GCPs. Therefore, it can be stated that GCP must be applied to create the 3D slope model in which information about the height as well as plane information is important.

Wave Forces Acting on Large Vertical Circular Cylinder and Consequent Wave Transformations by Full-Nonlinear Analysis Method after Wave Breaking (강비선형해석법에 의한 대형연직원주구조물에 작용하는 쇄파후의 파력 및 파랑변형)

  • Lee, Kwang-Ho;Shin, Dong-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.4
    • /
    • pp.401-412
    • /
    • 2008
  • Simulations of three-dimensional numerical wave tank are performed to investigate wave force acting on a large cylindrical structure and consequent wave deformation, which are induced by bore after breaking waves. The numerical model is based on the three-dimensional Navier-Stokes equations with a finite-difference method combined with a volume of fluid(VOF) method, which is capable of tracking the complex free surface, including wave breaking. In order to promote wave breaking of the incident wave, the approach slope was built seaward of the structure with a constant slope and a large cylindrical structure was installed on a flat bed. The incident waves were broken on the approach slope or flat bed by its wave height. In the present study, all waves acting on the large cylindrical structure were limited to breaking bore after wave breaking. The effects of the position of the structure and the incident wave height on the wave force and wave transformations were mainly investigated with the concern of wave breaking. Further, the relations between the variation of wave energy by wave propagation after wave breaking and wave force acting on the structure were discussed to give the understanding of the full-linear wave-structure interactions in three-dimensional wave fields.

Sensitivity Analysis for Railway Development Areas Using Land Cover Map (토지피복지도를 활용한 철도개발지의 민감도 분석)

  • Kim, Min-Kyeong;Kim, Dong-Yoeb
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.1
    • /
    • pp.76-84
    • /
    • 2017
  • Recently, the 'Ecological Network Restoration Project at Chupungnyeong' has been placed; this project is located at the center of the Baekdu mountain spine, the core of the ecological network of the Korean Peninsula. In the process of industrialization since the early 1900s, this area has been under railroad and road construction; as such, wildlife movements have been interrupted and many cases of road-kill have been found. The investment in railroads has increased because railroads are an environmentally sound means of transportation. Single track railways have been converted to double track electric railways and track reforming projects are underway in order to speed up the current railway system. This study suggests to take land use as a standard for assessing the ecological weaknesses of the domestic geo-spaces that are to be affected by rapid extension of railway lines. The land cover map issued by the Ministry of Environment was overlapped with the Korean Railway Line Map for analysis. The results showed that five items were high in sensitivity: paddy fields, fields, deciduous forests, bare land, and inland waters. It seems to be necessary to set weights for highly sensitive land use types; also, specific evaluation criteria need to be reestablished.

The Development of the Manipulator and End-effector of Automated Pavement Crack Sealing Machine and Movement Test (도로면 크랙실링 자동화 장비의 모체 제작 및 구동 실험)

  • Lee, Jeong-Ho;Lee, Won-Jae;Yoo, Hyun-Seok;Kim, Young-Suk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4D
    • /
    • pp.377-386
    • /
    • 2012
  • Crack sealing has been widely used in the pavement maintenance due to its advantage of repairing the cracks at the preliminary stages. However, it has been analyzed that the crack sealing work process is dangerous and labor intensive. Moreover, quality and productivity of crack sealing work are highly depended on labor experience and skills. Therefore, various crack sealing machines have been researched but revealed many limitations in practical application. This research analyses conventional crack sealing work process and previously developed crack sealing machines in order to develop an automated pavement crack sealing machine which can be practically and widely applied in the construction fields. This paper develops the previously proposed conceptual design by drawing detailed designs and fabricating the hardware(manipulator and end-effector) of the automated pavement crack sealing machine. The crack sealing machine suggested in this paper overcomes limitations of existing crack sealing machines and designed to meet the domestic road conditions and regulations. It is expected that automating the conventional crack sealing method contributes to the improvement of quality, economy and reduce accidents.

A Study on the Determination of Setting Time of Concrete in the Determination of Slip-up Speed for Slip-Form System (슬립폼 시스템 상승속도 결정에 요구되는 콘크리트에서의 초기경화시간 결정을 위한 연구)

  • Kim, Heeseok;Kim, Young-Jin;Chin, Won-Jong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4A
    • /
    • pp.295-302
    • /
    • 2011
  • The setting time which is the important element for the determination of slip-up speed of Slip-Form system is the hardening time of early-age concrete when the in place concrete has minimum compressive strength before the concrete appears out of Slip-Form system. But it is very difficult to predict the setting time because it depends on not only the composition ratio of concrete but also various conditions of construction fields. Thus, the technique to estimate accurately and continuously the hardening time of early-age in place concrete during operating Slip-Form system is necessary to guarantee the safety of Slip-Form system and the maintenance of the shape of concrete. Ultrasonic wave-based nondestructive testing methods have the advantages which are accurate and continuous in estimating concrete compressive strength. Of such methods, the method using surface wave which propagates along the surface of material is effective for thick member such as a pylon. Thus, in this paper a study on the determination of slip-up speed for Slip-Form system using surface wave velocity is performed. The relation between the slip-up speed of Slip-Form system and the setting time is formulated, and the surface wave velocity is estimated from continuous wavelet transform of the numerical results for surface wave propagation. Finally, the accuracy of this method according to the distance between the wave source and receivers and the relation between the estimated surface wave velocity and the elastic modulus are investigated.

Evaluation of Performance of Modified Recycling Asphalt Mixture and Normal Asphalt Mixture Using Basalt Powder Sludge as Filler (현무암 석분슬러지를 채움재로 활용한 개질재생아스팔트혼합물과 일반아스팔트혼합물의 공용성 평가)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.611-619
    • /
    • 2018
  • Basalt powder sludge (abbreviated BPS) is an inevitable industry by product resulted from the stone processing. Recently, demands for natural materials have been increasing in the construction and landscaping fields, therefore, amounts of BPS have been also increasing. Since most of BPS are used as landfill and earth soil, it is necessary to figure out to expedite their utilization. In this study, by considering the characteristics of precipitation of Jeju, effectiveness of BPS as a filler for asphalt compounds mixed with cement were analyzed. As a result, BPS satisfies quality criterion required in KS F 3501. Marshall mixing designs were performed to determine the optimal asphalt content for the Modified recycling asphalt mixture (27% recycling aggregate) and the Normal asphalt mixture. Effectiveness of BPS were identified by the Marshall Stability Test with the mixing ratio (level 3) of two asphalt compounds and composition ration (level 3) of BPS and cement. Performance of asphalt compounds shown appropriate effect of mixing and composition ratios of the filler were assessed. Test results show that two types of asphalt compounds satisfy the quality standards of the MLIT (2015). Therefore, BPS could be used as filler for asphalt compounds.

Influence of Pile Driving-Induced Vibration on the Adjacent Slope (파일 항타진동이 인접 비탈면에 미치는 영향)

  • Kwak, Chang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.5
    • /
    • pp.27-40
    • /
    • 2023
  • A pile is a structural element that is used to transfer external loads from superstructures and has been widely utilized in construction fields all over the world. The method of installing a pile into the ground should be selected based on geotechnical conditions, location, site status, environmental factors, and construction costs, among others. It can be divided into two types: direct hammering and preboring. The direct hammering method installs a pile into the bearing layer, such as rock, using a few types of hammer, generating a considerable amount of pile driving-induced vibration. The vibration from pile driving influences adjacent structures and the ground; therefore, quantitatively investigating the effects of vibration is inevitably required. In this study, two-dimensional dynamic numerical modeling and analysis are performed using the finite difference method to investigate the influence on the adjacent slope, including temporary supporting system. Time-dependent loading induced by pile driving is estimated and used in the numerical analysis. Consequently, large surface displacement is estimated due to surface waves and less wave deflection, and refraction at the surface. The total displacement decreases with the increase of the distance from the source. However, lateral displacement at the top of the slope shows a larger value than vertical displacement, and the overall displacement tends to be concentrated near the face of the slope.