• 제목/요약/키워드: Civil 3D

검색결과 2,740건 처리시간 0.03초

원위치 X-ray CT 촬영이 가능한 암석의 수리-역학 실험용 삼축셀 개발 (Development of Triaxial Cells Operable with In Situ X-ray CT for Hydro-Mechanical Laboratory Testing of Rocks)

  • 장리;염선;신휴성
    • 한국지반공학회논문집
    • /
    • 제36권9호
    • /
    • pp.45-55
    • /
    • 2020
  • X-ray CT는 암석시편의 공극 및 균열과 같은 내부 미세구조와 손상들의 정량적 분석에 활용되어 왔다. 원위치 CT는 외력 등 다양한 외적 요인에 영향을 받고 있는 암석 시편의 내외부 변화 과정을 관찰할 수 있게 해준다. 이의 확인을 위해, 암반/지반재료 특성분석에 활용한 원위치 X-ray CT 기술에 관한 최신 연구동향을 파악하였으며, 원위치 CT이미징이 가능한 암석의 수리-역학적 실험용 삼축셀을 개발하였다. 직경 25~50 mm 화강암 및 사암 코아시편의 원위치 CT이미징이 성공적으로 진행되었으며, 34~105 ㎛ 범위의 픽셀피치의 해상도를 취득할 수 있었다. 본 사전검토 촬영 실험을 통해 마이크로미터 스케일에서 암석의 내부구조 변화의 원위치 CT관찰이 가능한 것을 파악하였다. 요오드화 칼륨 용액은 CT이미지의 대비를 증가시키고 암석의 수리-역학 실험에서 주입유체로 사용할 수 있다.

건축물 평면 형상에 대한 형상-to-BIM 맵핑 규칙 정의 (Geometry-to-BIM Mapping Rule Definition for Building Plane BIM object)

  • 강태욱
    • 한국산학기술학회논문지
    • /
    • 제20권10호
    • /
    • pp.236-242
    • /
    • 2019
  • 최근 유지보수 등의 목적으로 다양한 건설 및 건축 분야에서 스캔 프로젝트가 수행되고 있다. 스캔된 결과로 생선된 포인트 클라우드는 스캔 대상물을 표현하는 수많은 점들로 구성되어 있다. 이런 스캔 데이터에서 치수를 포함한 필요한 정보를 추출하는 과정을 역설계라 한다. 포인트 클라우드를 BIM으로 모델링하는 역설계 과정은 수많은 수작업이 포함되어 있다. 시간이 많이 소모되는 역설계 작업 특성상 설계변경 같은 재작업 요청이 발생되면 비용은 기하급수적으로 증가한다. 역설계 자동화 기술이 이런 문제를 개선하는 데 도움을 줄 수 있다. 하지만, 역설계 산출물은 유스케이스에 따라 가변성을 가지며, 산출물의 종류와 상세수준은 달라질 수 있다. 이런 점을 고려해, 본 연구는 건축물 평면객체 기본 형상(primitive geometry)에서 BIM객체로 자동 맵핑하는 G2BM(Geometry-to-BIM mapping) 규칙 정의 방법을 제안한다. G2BM는 사용자 활용사례 가변성을 고려한 건축물 평면 BIM객체 역설계 프로세스 정의와 사용자화 방안을 제안한다. 그리고, 프로토타입을 통해 이에 대한 효과를 확인한다.

코튼볼 여재의 여과 특성 실험 연구 (An experimental study on the filtration test of cotton ball filters)

  • 김성홍;김희준;김동한
    • 상하수도학회지
    • /
    • 제33권1호
    • /
    • pp.79-86
    • /
    • 2019
  • In order to measure the filtration characteristics of a cotton ball shape filter, the experiments of suspended solids(SS) surrogate material selection and filtration performance have been carried out in this study. Between the two materials of powdered activated carbon(PAC) and powdered red-clay, PAC is more suitable surrogate material in terms of experimental criteria and particle size distribution in the non-point source pollutants removal system. As a result of the filtration experiments with the cotton ball shape filter, the initial headloss was about 8 cm, and the headloss slightly increased over filtration time. The Kozeny-Carman equation was used to analyze the changes of pressure and porosity during the filtration. The initial porosity was calculated as 0.945 and it decreased to 0.936 at the end of design filtration time. As the filtration continued, the SS concentration of the filtered water gradually increased and the SS removal rate gradually decreased. When the SS target removal efficiency is assumed to be 80%, the cumulative SS removal capacity is expected as $28.8kg/m^2$. This means the volume loading rate of the cotton ball shape filter can be $115m^3/m^2$ when the typical SS concentration of non-point source water pollution is assumed as 250 mg/L.

Effect of PCE superplasticizers on rheological and strength properties of high strength self-consolidating concrete

  • Bauchkar, S.D.;Chore, H.S.
    • Advances in concrete construction
    • /
    • 제6권6호
    • /
    • pp.561-583
    • /
    • 2018
  • A variety of polycarboxylate ether (PCE)-based superplasticizers are commercially available. Their influence on the rheological retention and slump loss in respect of concrete differ considerably. Fluidity and slump loss are the cardinal features responsible for the quality of concrete. These are related to the dispersion of cement particles and the hydration process which are greatly influenced by type of polycarboxylate ether (PCE)-based superplasticizers. On the backdrop of relatively less studies in the context of rheological retention of high strength self-consolidating concrete (HS-SCC), the experimental investigations were carried out aiming at quantifying the effect of the six different PCE polymers (PCE 1-6) on the rheological retention of HS-SCC mixes containing two types of Ordinary Portland Cements (OPC) and unwashed crushed sand as the fine aggregate. The tests that were carried out included $T_{500}$, V-Funnel, yield stress and viscosity retention tests. The supplementary cementitious materials such as fly ash (FA) and micro-silica (MS) were also used in ternary blend keeping the mix paste volume and flow of concrete constant. Low water to binder ratio was used. The results reveal that not only the PCEs of different polymer groups behave differently, but even the PCEs of same polymer groups also behave differently. The study also indicates that the HS-SCC mixes containing PCE 6 and PCE 5 performed better as compared to the mixes containing PCE 1, PCE 2, PCE 3 and PCE 4 in respect of all the rheological tests. The PCE 6 is a new class of chemical admixtures known as Polyaryl Ether (PAE) developed by BASF to provide better rheological properties in even in HS-SCC mixes at low water to binder mix. In the present study, the PCE 6, is found to help not only in reduction in the plastic viscosity and yield stress, but also provide good rheological retention over the period of 180 minutes. Further, the early compressive strength properties (one day compressive strength) highly depend on the type of PCE polymer. The side chain length of PCE polymer and the fineness of the cement considerably affect the early strength gain.

Physical and numerical modelling of the inherent variability of shear strength in soil mechanics

  • Chenari, Reza Jamshidi;Fatahi, Behzad;Ghoreishi, Malahat;Taleb, Ali
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.31-45
    • /
    • 2019
  • In this study the spatial variability of soils is substantiated physically and numerically by using random field theory. Heterogeneous samples are fabricated by combining nine homogeneous soil clusters that are assumed to be elements of an adopted random field. Homogeneous soils are prepared by mixing different percentages of kaolin and bentonite at water contents equivalent to their respective liquid limits. Comprehensive characteristic laboratory tests were carried out before embarking on direct shear experiments to deduce the basic correlations and properties of nine homogeneous soil clusters that serve to reconstitute the heterogeneous samples. The tests consist of Atterberg limits, and Oedometric and unconfined compression tests. The undrained shear strength of nine soil clusters were measured by the unconfined compression test data, and then correlations were made between the water content and the strength and stiffness of soil samples with different consistency limits. The direct shear strength of heterogeneous samples of different stochastic properties was then evaluated by physical and numerical modelling using FISH code programming in finite difference software of $FLAC^{3D}$. The results of the experimental and stochastic numerical analyses were then compared. The deviation of numerical simulations from direct shear load-displacement profiles taken from different sources were discussed, potential sources of error was introduced and elaborated. This study was primarily to explain the mathematical and physical procedures of sample preparation in stochastic soil mechanics. It can be extended to different problems and applications in geotechnical engineering discipline to take in to account the variability of strength and deformation parameters.

자갈하천 총유사량에 대한 소류사의 비율 (Ratio of Bedload to Total Sediment Load in Gravel-bed Rivers)

  • 박상덕
    • 한국지형학회지
    • /
    • 제25권2호
    • /
    • pp.15-29
    • /
    • 2018
  • The sediment transport process in a river reflects the process of geomorphological change in the watershed, influencesthe river bed variation and the river channel migration, and is a parametric phenomenon that exhibits a dynamic self-adjusting process. Sediment load is divided into bedload and suspended load depending on the dominant mechanism. Quantitative sediment load is important information for solving river problems. Because it is difficult and time consuming to measure bedload, compared to that ofsuspended load, data on the sediment transport load and the research required for the gravel-bed rivers are insufficient. This study is to analyze the ratio of the bedload to the total sediment load in gravel-bed rivers. The sediment load ratio in gravel-bed rivers increases with the flow rate per unit width, and the rate of the bedload varies more rapidly than the suspended load. The sediment transport efficiency coefficient has been affected by the ratio of the flow depth to the mean diameter of particles and has been dependent on the shear velocity Reynolds number. So $A^{\ast}$ and $B^{\ast}$ are introduced to compensate for the uncertainties such as bed materials, sediment transport, and flow velocity distribution, and the coefficient of bedload ratio has been presented. For the sediment load data in experimental channels and rivers, A* was 3.1. The dominant variables of $B^{\ast}$ were $u_*d_m/{\nu}$ in the gravel-bed and h/dm in the sand-bed. When $B^{\ast}$ the is the same, in the experimental channels the coefficient of bedload ratio was affected by the bed forms, but in the rivers it was of little difference between the gravel-bed and sand-bed.

Fatigue performance evaluation of reinforced concrete element: Efficient numerical and SWOT analysis

  • Saiful Islam, A.B.M.
    • Computers and Concrete
    • /
    • 제30권4호
    • /
    • pp.277-287
    • /
    • 2022
  • Due to the scarcity of extortionate experimental data, fatigue failure of the reinforced concrete (RC) element might be achieved economically adopting nonlinear finite element (FE) analysis as an alternative approach. However, conventional implicit dynamic analysis is expensive, quasi-static method overlooks interaction effects and inertia, direct cyclic analysis computes stabilized responses. Apart from this, explicit dynamic analysis may provide a numerical operating system for factual long-term responses. The study explores the fatigue behavior based on a simplified explicit dynamic solution employing nonlinear time domain analysis. Among fourteen RC beams, one beam is selected to validate under static loading, one under fatigue with the experimental study and other twelve to check the detail fatigue behavior. The SWOT (Strength, Weakness, Opportunities, Threats) analysis has been carried out to pinpoint the detail scenario in the adoption of numerical approach as an alternative to the experimental study. Excellent agreement of FE and experimental results is seen. The 3D nonlinear RC beam model at service fatigue limits is truthful to be used as an expedient contrivance to envisage the precise fatigue behavior. The simplified analysis approach for RC beam under fatigue offers savings in computation to predict responses providing acceptable accuracy rather than the complicated laboratory investigation. At higher frequency, the flexural failure occurs a bit earlier gradually compared to the repeated loading case of lower frequency. The deflection increases by 6%-10% at the end of first cycle for beams with increasing frequency of cyclic loading. However, at the end of fatigue loading, greater deflection occur earlier for higher load range because of more rapid stiffness degradation. For higher frequency, a slight boost in concrete compressive strains at an initial stage of loading has been seen indicating somewhat stepper increment. Stiffness degradation in larger loading cycle at same duration escalates the upsurge of the rate of strain in case of higher frequency.

건축 WBS 위계 분석을 통한 소방 IFC 스키마 확장 방법론에 관한 연구 (Methodology of Fire Safety IFC Schema Extension through Architectural WBS Hierarchy Analysis)

  • 김태훈;원정혜;홍순민;추승연
    • 한국BIM학회 논문집
    • /
    • 제12권4호
    • /
    • pp.70-79
    • /
    • 2022
  • As BIM(Building Information Modeling) technology advances in architecture around the world, projects and industries using BIM are increasing. Unlike previous developments that were limited to buildings, BIM is now spreading to other fields such as civil engineering and electricity. In architecture, BIM is used in the entire process from design to maintenance of a building, and IFC(Industry Foundation Classes), a neutral format with interoperability, is used as an open BIM format. Since firefighting requires intuitive 3D models for evacuation and fire simulations, BIM models are desirable. However, due to the BIM model, which was developed centered on building objects, there are no objects and specific properties for fire evacuation in the IFC scheme. Therefore, in this study, when adding a new object in the firefighting area to the IFC schema, the IFC interoperability is not broken and the building WBS(Work Breakdown Structure) is analyzed with a hierarchical system similar to the IFC format to define the scope for a new object and the firefighting part within of the building WBS to derive a firefighting HBS(Hierarchy Breakdown Structure) with the extension of the object-oriented IFC file. And according to HBS, we propose an IFC schema extension method. It is a methodology that allows BIM users to instantly adapt the IFC schema to their needs. Accordingly, the methodology derived from this study is expected to be expanded in various areas to minimize information loss from IFC. In the future, we will apply the IFC extension methodology to the actual development process using HBS to verify that it is actually applicable within the IFC schema.

Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3D nonlinear finite element analysis

  • Markou, George;Bakas, Nikolaos P.
    • Computers and Concrete
    • /
    • 제28권6호
    • /
    • pp.533-547
    • /
    • 2021
  • Calculating the shear capacity of slender reinforced concrete beams without shear reinforcement was the subject of numerous studies, where the eternal problem of developing a single relationship that will be able to predict the expected shear capacity is still present. Using experimental results to extrapolate formulae was so far the main approach for solving this problem, whereas in the last two decades different research studies attempted to use artificial intelligence algorithms and available data sets of experimentally tested beams to develop new models that would demonstrate improved prediction capabilities. Given the limited number of available experimental databases, these studies were numerically restrained, unable to holistically address this problem. In this manuscript, a new approach is proposed where a numerically generated database is used to train machine-learning algorithms and develop an improved model for predicting the shear capacity of slender concrete beams reinforced only with longitudinal rebars. Finally, the proposed predictive model was validated through the use of an available ACI database that was developed by using experimental results on physical reinforced concrete beam specimens without shear and compressive reinforcement. For the first time, a numerically generated database was used to train a model for computing the shear capacity of slender concrete beams without stirrups and was found to have improved predictive abilities compared to the corresponding ACI equations. According to the analysis performed in this research work, it is deemed necessary to further enrich the current numerically generated database with additional data to further improve the dataset used for training and extrapolation. Finally, future research work foresees the study of beams with stirrups and deep beams for the development of improved predictive models.

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • 제83권5호
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.