• Title/Summary/Keyword: Citation Database

Search Result 137, Processing Time 0.023 seconds

Characteristics of Input and Output of Scientific Research (국가별 과학연구 투입과 성과의 특성분석)

  • Park, Hyun-Woo;Kim, Kyung-Ho;Yeo, Woon-Dong
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.3
    • /
    • pp.471-498
    • /
    • 2009
  • The ability to judge a country's scientific standing is vital for the governments and businesses that must decide scientific priorities and funding. In this paper, we analyze the output and outcomes from research investment over the recent years, to measure the quality of scientific research on national scales and to set it in an international context. There are many ways to evaluate the quality of scientific research, but few have proved satisfactory. To measure the quantity and quality of science in different nations, we analyzed the numbers of published research papers and their citations. The number of citations per paper is a useful measure of the impact of a nation's research output. Essential at a were acquired from SCI database by Thomson Scientific, which indexes more than 8,000 journals, representing most significant materials in science and engineering. The purpose of this paper is to evaluate and compare the output and outcomes among nations in a variety of viewpoints and criteria. One of the implications in response to the result of analysis is that sustainable economic development in highly competitive world markets requires a direct engagement in the generation of knowledge. Even modest improvement in healthcare, clean water, sanitation, food, and transport need capabilities in engineering, technology, and medicine beyond many countries' reach. Nations exporting natural resources such as gold and oil can import technology and expertise, but only until these resources are exhausted. For them, sustainability should imply investment in alternative agricultural and technological capabilities through improvements in their skills base. A strong science base does not necessarily leat to wealth generation. However, strength in science has additional benefits for individual nations, and for the world as a whole.

  • PDF

Evaluation on the Quality of Research Field with Traditional Herbal Prescriptions for Dementia Therapy (치매 치료용 한약 처방의 연구성과에 대한 정성평가)

  • Heo, Eun-Jung;Kang, Jong-Seok;Kang, Hyung-Won;Jeon, Won-Kyung
    • Journal of Oriental Neuropsychiatry
    • /
    • v.23 no.1
    • /
    • pp.93-114
    • /
    • 2012
  • Objective : This study aimed to review the performance of traditional herbal prescriptions for treating dementia and present a strategy for research on dementia therapy utilizing herbal medicine. Methods : A definition was made to clarify the technology regarding the development of herbal prescriptions for treating dementia. The queries were compounded based on the initial keywords provided by experts in the field, then applied to the Web of Science database search engines from January 1986 to September 2011 to search related scientific articles. Before performing the analysis, papers were extracted from the initial search reviewed by experts and 80 articles were selected. Then, the selected papers were analyzed in terms of publish year, country, and type of herbal prescriptions. Furthermore, the research performance evaluation for treating dementia by herbal prescriptions was also created in terms of country and organization based on forward citation analysis. In addition to, for the evaluation regarding research quality, we classified and reviewed papers into two types: clinical studies and experimental studies. Results : According to the quantitative information analysis of 80 articles, the number of papers has increased by 21.9% per the yearly mean from 1995, and Japan had the largest portion within this research field. There were 34 kinds of traditional herbal prescriptions, among them Ukgansan had the highest number of studies followed by Jodeungsan, Dangkisoosan and so on. In addition, quality index as calculated by cites per paper is higher than average in Switzerland, Turkey and Japan. In the view of the evaluation on quality there were 12 clinical studies, 8 RCT reported that herbal prescriptions had efficacy at cognition, behavioral & psychological symptoms (BPSD) and activity of daily life (ADL) in various type of dementia. In experimental studies most of the studies were performed using animal models. The studies using Ukgansan were aimed at improving BPSD. The papers studied with Jodeungsan and Dangkisoosan targeted vascular dementia. Conclusions : In this study, research to develop traditional herbal prescriptions for treating dementia has the potential to improve symptoms since herbal medicines work as both multi-function and multi-target in dementia with multiple pathological or neurotoxic pathways. Therefore, the results of the research should be used in order to establish strategies to develop technology for treating dementia with traditional herbal prescriptions in the future.

Lack of Any Association of GST Genetic Polymorphisms with Susceptibility to Ovarian Cancer - a Meta-analysis

  • Han, Li-Yuan;Liu, Kui;Lin, Xia-Lu;Zou, Bao-Bo;Zhao, Jin-Shun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.15
    • /
    • pp.6131-6136
    • /
    • 2014
  • Objective: Epidemiology studies have reported conflicting results between glutathione S-transferase Mu-1 (GSTM1), glutathione S-transferase theta-1 (GSTT1) and glutathione S-transferase pi-1 (GSTP1) and ovarian cancer (OC) susceptibility. In this study, an updated meta-analysis was applied to determine whether the deletion of GSTM1, GSTT1 and GSTP1 has an influence on OC susceptibility. Methods: A published literature search was performed through PubMed, Embase, Cochrane Library, and Science Citation Index Expanded database for articles published in English. Pooled odds ratios (ORs) and 95% confidence intervals (95%CIs) were calculated using random or fixed effects models. Heterogeneity between studies was assessed using the Cochrane Q test and $I^2$ statistics. Sub-group analysis was conducted to explore the sources of heterogeneity. Sensitivity analysis was employed to evaluate the respective influence of each study on the overall estimate. Results: In total, 10 published studies were included in the final analysis. The combined analysis revealed that there was no significant association between GSTM1 null genotype and OC risk (OR=1.01, 95%CI: 0.91-1.12). Additionally, there was no significant association between GSTT1 genetic polymorphisms and OC risk (OR=0.98, 95% CI: 0.85-1.13). Similalry, no significant associations were found concerning the GSTP1 rs1695 locus and OC risk. Meanwhile, subgroup analysis did not show a significant increase in eligible studies with low heterogeneity. However, sensitivity analysis, publication bias and cumulative analysis demonstrated the reliability and stability of the current meta-analysis. Conclusions: These findings suggest that GSTs genetic polymorphisms may not contribute to OC susceptibility. Large epidemiological studies with the combination of GSTM1 null, GSTT1 null and GSTP1 Ile105Val polymorphisms and more specific histological subtypes of OC are needed to prove our findings.

Mainstream Productivity of SCI Korean Medical Papers by Medical Specialty: 1980-1990 (Science Citation Index (SCI)에 수록된 한국 의학논문들의 의학분야별 실적평가: 1980-1990)

  • Lee Choon Shill;Yoon Bong Ja
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.28
    • /
    • pp.287-299
    • /
    • 1995
  • 지금까지 국내 연구자들이 SCI 학술지에 발표한 의학논문의 수가 아주 미미하기 때문에 전 세계 학자들이 발표한 SCI 전체논문 중 한국논문이 차지하는 비중은 지극히 낮은 것으로 보인다. 따라서, 본 연구에서는 1980년부터 1990년 사이에 국내에 있는 의학 관련기관의 연구자들이 SCI 학술지에 발표한 논문이 SCI 전체 논문 중 차지하는 비중(Percentage Contribution from Korea to SCI Database)을 47개 의학분야별로 조사하였다. 또한. 본 연구에서는 "국제적으로 영향력 있는 학술연구 활동실적(i.e., Mainstream Productivity)"이 타 분야보다 뛰어난 한국의 의학분야를 밝히기 위하여. SCI 학술지에 발표된 모든 한국 의학논문 중 한 분야의 논문이 자치하는 몫(Percentage Share)을 SCI 전체 논문 중 그 분야의 논문이 차지하는 몫으로 나누어 그 상대적 크기를 분석함으로써, 우리나라 학자들의 Mainstream Productivity Ratio(R)를 각 분야별로 측정하였다. (R=1은 SCI 의학 학술지에 발표된 모든 논문 중에서 어떤한 분야의 논문이 차지하는 비율만큼 한국에서도 그 분야의 논문이 SCI 학술지에 투고되었다는 의미이다.) 1980년에서 1990년 사이에 한국 학자들에 의하여 SCI에 발표된 의학논문이 SCI 전체 의학논문 중에서 차지하는 비율은 $0.051\%$였다. 각 의학 분야별로는, Biotechnology & applied microbiology의 기여도가 $0.8\%$를 차지하여 한국 최고를 기록하였다. 전 세계 문헌의 $1\%$ 이상을 생산한 의학 분야는 없었다. 전 세계 문헌의 $0.1\%$ 이상을 SCI 학술지에 게재한 의학분야는 47개 중 6개인데, 위에 언급한 Biotechnology & applied microbiology를 제외하면 $0.1\%$에서 $0.2\%$ 사이의 기여도를 보였다. 최다 편수의 논문을 낸 Pharmacology 8l Pharmacy$(0.075\%)$나 두 번째로 논문수가 많았던 Biochemisty & molecular biology$(0.054\%)$의 기여도는 $0.1\%$에 미치지 못하였다. 조사대상이 된 47개 의학분야 중 27개 분야에서 예상된 것보다 상대적으로 적은수(R<1)의 한국 논문이 SCI 학술지에 게재되었다. Mainstream Productivity Ratio가 3보다 큰 분야는 4개인데, 그 중 Biotechnology & applied microbiology는 R=15.63으로 아주 월등한 논문 발표실적을 올렸다. Dermatology & venereal diseases(3.02)와 Engineering, biomedical(3.75)도 국제적으로 영향력 있는 학술지에 논문 발표실적이 뛰어난 의학분야이다.

  • PDF

Measurement of Global Nursing Research Output: A Bibliometric Study (1996-2015)

  • Singh, Shivendra;Pandita, Ramesh
    • Journal of Information Science Theory and Practice
    • /
    • v.6 no.1
    • /
    • pp.31-44
    • /
    • 2018
  • Purpose: This study aims to examine the research output in the field of nursing at the global level during the last two decades, viz., for the period 1996-2015, with special reference to India. Some of the aspects examined include the research growth in nursing literature during the period of study, leading nursing research countries at the regional and global level, and citation analysis. Scope and Methodology: This study is global in nature, but emphasis has also been laid on India's research contribution in nursing at the global level. Aspects like regional contribution to the nursing research output have also been assessed. This study is purely based on secondary data retrieved from SCImago Journal and Country Rankings. The figures in the study are based on one particular database and are not exhaustive; hence they simply reflect a trend in nursing research at the global level. Findings: During the period 1996 through 2015, a total of 550,490 research articles were published across the world by 212 nation states at an average of 2,596 articles from each individual country. On average, during the period of study, the number of nursing research publications grew at the rate of 7.36% each year. North America has emerged as one of the leading nursing research continents of the world by publishing 218,614 research articles, constituting 39.71% of the global nursing research output. The U.S. and U.K. are the world's two leading nursing research countries, which contributed 193,819 and 61,730 research articles respectively, comprising a 35.21% and 11.21% share of global nursing research output. India and China, apart from being the two fastest growing nursing research countries, have the potential to meet the global human resource demand in the field of nursing, given the skilled and trained human resource both these countries possess in nursing. Social Implication: There is always a need to share working knowledge in some professions and nursing is one of them. There cannot be a better medium than linking practice with theory through the research medium. Metric studies in turn help to get a better idea about the amount of work done in any given field at the national and international level, thus identifying the need thereof to improve upon those areas where there is research lag.

Machine- and Deep Learning Modelling Trends for Predicting Harmful Cyanobacterial Cells and Associated Metabolites Concentration in Inland Freshwaters: Comparison of Algorithms, Input Variables, and Learning Data Number (담수 유해남조 세포수·대사물질 농도 예측을 위한 머신러닝과 딥러닝 모델링 연구동향: 알고리즘, 입력변수 및 학습 데이터 수 비교)

  • Yongeun Park;Jin Hwi Kim;Hankyu Lee;Seohyun Byeon;Soon-Jin Hwang;Jae-Ki Shin
    • Korean Journal of Ecology and Environment
    • /
    • v.56 no.3
    • /
    • pp.268-279
    • /
    • 2023
  • Nowadays, artificial intelligence model approaches such as machine and deep learning have been widely used to predict variations of water quality in various freshwater bodies. In particular, many researchers have tried to predict the occurrence of cyanobacterial blooms in inland water, which pose a threat to human health and aquatic ecosystems. Therefore, the objective of this study were to: 1) review studies on the application of machine learning models for predicting the occurrence of cyanobacterial blooms and its metabolites and 2) prospect for future study on the prediction of cyanobacteria by machine learning models including deep learning. In this study, a systematic literature search and review were conducted using SCOPUS, which is Elsevier's abstract and citation database. The key results showed that deep learning models were usually used to predict cyanobacterial cells, while machine learning models focused on predicting cyanobacterial metabolites such as concentrations of microcystin, geosmin, and 2-methylisoborneol (2-MIB) in reservoirs. There was a distinct difference in the use of input variables to predict cyanobacterial cells and metabolites. The application of deep learning models through the construction of big data may be encouraged to build accurate models to predict cyanobacterial metabolites.

Bibliometric Analysis on Health Information-Related Research in Korea (국내 건강정보관련 연구에 대한 계량서지학적 분석)

  • Jin Won Kim;Hanseul Lee
    • Journal of the Korean Society for information Management
    • /
    • v.41 no.1
    • /
    • pp.411-438
    • /
    • 2024
  • This study aims to identify and comprehensively view health information-related research trends using a bibliometric analysis. To this end, 1,193 papers from 2002 to 2023 related to "health information" were collected through the Korea Citation Index (KCI) database and analyzed in diverse aspects: research trends by period, academic fields, intellectual structure, and keyword changes. Results indicated that the number of papers related to health information continued to increase and has been decreasing since 2021. The main academic fields of health information-related research included "biomedical engineering," "preventive medicine/occupational environmental medicine," "law," "nursing," "library and information science," and "interdisciplinary research." Moreover, a co-word analysis was performed to understand the intellectual structure of research related to health information. As a result of applying the parallel nearest neighbor clustering (PNNC) algorithm to identify the structure and cluster of the derived network, four clusters and 17 subgroups belonging to them could be identified, centering on two conglomerates: "medical engineering perspective on health information" and "social science perspective on health information." An inflection point analysis was attempted to track the timing of change in the academic field and keywords, and common changes were observed between 2010 and 2011. Finally, a strategy diagram was derived through the average publication year and word frequency, and high-frequency keywords were presented by dividing them into "promising," "growth," and "mature." Unlike previous studies that mainly focused on content analysis, this study is meaningful in that it viewed the research area related to health information from an integrated perspective using various bibliometric methods.