• Title/Summary/Keyword: Circulation Rate

Search Result 709, Processing Time 0.025 seconds

A Non-Heating Small-Sclaed Experimental Study on the Two-Phase Natural Circulation Flow through an Annular Gap between Reactor Vessel and Insulation (소형 비가열 실험을 이용한 원자로용기 외벽냉각시 용기와 단열재 사이의 자연순환 이상유동에 관한 연구)

  • Ha, Kwang-Soon;Park, Rae-Joon;Cho, Young-Rho;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1927-1932
    • /
    • 2004
  • A 1/21.6 scaled non-heating experimental facility was prepared utilizing the results of a scaling analysis to simulate the APR1400 reactor and insulation system. The behaviors of the air bubble-induced two-phase natural circulation flow in the insulation gap were observed, and the liquid mass flow rates driven by natural circulation loop were measured by varying the injected air flow rate and distribution. As the injected air flow rates increased, the natural circulation flow rates also increased. Both the longitudinal and the latitudinal distributions of the injected air affected the natural circulation flow rates, especially, the longitudinal effect is more larger.

  • PDF

Heat transfer and flow characteristics of a cooling thimble in a molten salt reactor residual heat removal system

  • Yang, Zonghao;Meng, Zhaoming;Yan, Changqi;Chen, Kailun
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1617-1628
    • /
    • 2017
  • In the passive residual heat removal system of a molten salt reactor, one of the residual heat removal methods is to use the thimble-type heat transfer elements of the drain salt tank to remove the residual heat of fuel salts. An experimental loop is designed and built with a single heat transfer element to analyze the heat transfer and flow characteristics. In this research, the influence of the size of a three-layer thimble-type heat transfer element on the heat transfer rate is analyzed. Two methods are used to obtain the heat transfer rate, and a difference of results between methods is approximately 5%. The gas gap width between the thimble and the bayonet has a large effect on the heat transfer rate. As the gas gap width increases from 1.0 mm to 11.0 mm, the heat transfer rate decreases from 5.2 kW to 1.6 kW. In addition, a natural circulation startup process is described in this paper. Finally, flashing natural circulation instability has been observed in this thimble-type heat transfer element.

Prediction of the Heat Exchange Rate for a Horizontal Ground Heat Pump System Using a Ground Heat Transfer Simulation (지중열 이동 시뮬레이션을 이용한 수평형 지열시스템의 채열성능 예측)

  • Nam, Yujin;Chae, Ho-Byung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.6
    • /
    • pp.297-302
    • /
    • 2013
  • The ground source heat pump (GSHP) system has attracted attention, because of its stability of heat production, and the high efficiency of the system. However, there are few studies on the prediction method of the heat exchange rate for a horizontal GSHP system. In this research, in order to predict the performance of a horizontal GSHP system, coupled simulation with a ground heat transfer model and a heat exchanger circulation model was developed, and calculation of heat exchange rate was conducted by the developed tool. In order to optimally design the horizontal GSHP system, the flow rate of circulation water, and the depth and buried spaces of heat exchangers were considered by the case study. As a result, the temperature of circulation water and the heat exchange rate of the system were calculated in each case.

The simulation study on natural circulation operating characteristics of FNPP in inclined condition

  • Li, Ren;Xia, Genglei;Peng, Minjun;Sun, Lin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1738-1748
    • /
    • 2019
  • Previous research has shown that the inclined condition has an impact on the natural circulation (natural circulation) mode operation of Floating Nuclear Power Plant (FNPP) mounted on the movable marine platform. Due to its compact structure, small volume, strong maneuverability, the Integral Pressurized Water Reactor (IPWR) is adopted as marine reactor in general. The OTSGs of IPWR are symmetrically arranged in the annular region between the reactor vessel and core support barrel in this paper. Therefore, many parallel natural circulation loops are built between the core and the OTSGs primary side when the main pump is stopped. and the inclined condition would lead to discrepancies of the natural circulation drive head among the OTSGs in different locations. In addition, the flow rate and temperature nonuniform distribution of the core caused by inclined condition are coupled with the thermal hydraulics parameters maldistribution caused by OTSG group operating mode on low power operation. By means of the RELAP5 codes were modified by adding module calculating the effect of inclined, heaving and rolling condition, the simulation model of IPWR in inclined condition was built. Using the models developed, the influences on natural circulation operation by inclined angle and OTSG position, the transitions between forced circulation (forced circulation) and natural circulation and the effect on natural circulation operation by different OTSG grouping situations in inclined condition were analyzed. It was observed that a larger inclined angle results the temperature of the core outlet is too high and the OTSG superheat steam is insufficient in natural circulation mode operation. In general, the inclined angle is smaller unless the hull is destroyed seriously or the platform overturn in the ocean. In consequence, the results indicated that the IPWR in the movable marine platform in natural circulation mode operation is safety. Selecting an appropriate average temperature setting value or operating the uplifted OTSG group individually is able to reduce the influence on natural circulation flow of IPWR by inclined condition.

Solid Circulation Rate in a Viscous Liquid-Solid Circulating Fluidized Bed (점성유체 액/고 순환유동층에서 입자의 순환속도)

  • Hong, Sung Kyu;Jang, Hyung Ryun;Lim, Dae Ho;Yoo, Dong Jun;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.706-711
    • /
    • 2016
  • Characteristics of solid circulation rate in the liquid-solid circulating fluidized beds with viscous liquid medium were investigated. Effects of primary and secondary liquid velocities, particle size, liquid viscosity and height of solid particles piled up in the solid recycle device on the solid circulation rate were considered. The solid circulation rate increased with increasing primary and secondary liquid velocities, liquid viscosity and height of solid particles in the downcommer, but it decreased with increasing particle size. The particle rising velocity in the riser decreased with increasing the ratio of $U_{L1}/U_{L2}$ and particle size. The slip velocity of liquid and particle, $U_L/U_S$, decreased with increasing liquid viscosity but it increased with increasing particle size. The values of solid circulation rate were well correlated in terms of operating variables and dimensionless groups.

Modeling of Solid Circulation in a Fluidized-Bed Dry Absorption and Regeneration System for CO2 Removal from Flue Gas (연소기체로부터 CO2 회수를 위한 건식 유동층 흡수-재생 공정의 고체순환 모사)

  • Choi, Jeong-Hoo;Park, Ji-Yong;Yi, Chang-Keun;Jo, Sung-Ho;Son, Jae-Ek;Ryu, Chong Kul;Kim, Sang-Done
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.286-293
    • /
    • 2005
  • An interpretation on the solid circulation characteristics in a fluidized-bed process has been carried out as a first step to simulate the dry entrained-bed absorption and bubbling-bed regeneration system for $CO_2$ removal from flue gas. A particle population balance has been developed to determine the solid flow rates and particle size distributions in the process. Effects of principal process parameters have been discussed in a laboratory scale process (absorption column: 25 mm i.d., 6 m in height; regeneration column: 0.1 m i.d., 1.2 m in height). The particle size distributions in absorption and regeneration columns were nearly the same. As gas velocity or static bed height in the absorption column increased, soild circulation rate and feed rate of fresh sorbent increased, however, mean particle diameter decreased in the absorption column. As cut diameter of the cyclone of the absorption column increased, solid circulation rate decreased, whereas feed rate of fresh sorbent and mean particle diameter in the absorption column increased. As attrition coefficient of sorbent particle increased, solid circulation rate and feed rate of fresh sorbent increased but mean particle diameter in the absorption column decreased.

A Study on the characteristics of the bed porosity and organic wastewater treatment with the circulation velocity in the anaerobic fluidized bed biofilm reactorA Study on the characteristics of the bed porosity and organic wastewater treatment with the circulation velocity in the anaerobic fluidized bed biofilm reactor (혐기성 유동층 생물막 반응기에서 순환유속 증가에 따른 층공극률 및 유기성 폐수 처리특성에 관한 연구)

  • 김재우;안재동
    • Journal of environmental and Sanitary engineering
    • /
    • v.10 no.3
    • /
    • pp.1.1-15
    • /
    • 1995
  • This study was performed to estimate the characteristics of the organic wastewater treatment and bed porosity with the circulation velocity in the anaerobic fluidized bed biofilm reactor. The results were as follows; 1. With Increasing circulation velocity the fluidized bed expanded smooth and with increasing initial particle volume the fluidized bed was increased. 2. With increasing circulation velocity the gasproduction was increased, but at 1.Scnt/sec of circulation velocity AFBBR showed the highest value of methane production rate per removed COD. Therefore, for the purpose of economical operation in AFBBR, 1.5cm/sec of circulation velocity was optimum 3. The microorganisms were colonized in the crevice of the media. 4. On fluidization, COD, VA,55 profiles with the reactor height were not showed. In conclusion, AFBBR suit the organic wastewater treatment's purpose, and at 1.5cm/sec of circulation velocity the system is economical in an energy Point of view.

  • PDF

Effect of Loop Seal Geometry on Solid Circulation in a Gas-Solid Fluidized Bed (기체-고체 유동층에서 루프실의 형상이 고체순환에 미치는 영향)

  • RYU, HO-JUNG;JO, SUNG-HO;LEE, SEUNG-YONG;LEE, DOYEON;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOO SEOB;KIM, JUNGHWAN;BAEK, JEOM-IN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.4
    • /
    • pp.312-319
    • /
    • 2019
  • Effect of loop seal geometry on solid circulation characteristics was investigated with two different types of upper loop seals and lower loop seals in a gas-solid fluidized bed system. Upper loop seal which has a wide gap between solid intake and outlet parts requires more fluidization gas to maintain smooth solid circulation. Moreover, the lower loop seal which has a wide gap requires more fluidization gas to achieve the same solid circulation rate. These results can be explained by results of minimum fluidization velocity in the lower loop seals. Consequently, if a loop seal has a wide gap between solid intake and outlet parts, more fluidization gases should be fed to ensure enough solid circulation rate and smooth solid circulation.

Hydraulic and Numerical Model Experiments of Circulation Water Intake for Boryeong Thermal Power Plant No. 7 and No. 8 (보령화력발전소 7·8호기 순환수 취수에 대한 수리 및 수치모형실험)

  • Yi, Yong-Kon;Cheong, Sang Hwa;Kim, Chang Wan;Kim, Jong Gang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5B
    • /
    • pp.459-467
    • /
    • 2006
  • In this study, hydraulic and numerical model experiments were performed to analyze and improve the effects of flow-rate increase in the intake canal of Boryeong Thermal Power Plants on the flow condition in the circulation water pump (CWP) chambers. Based on the numerical simulation results, when the flow-rate increased in the circulation water intake canal, the velocity in the canal and vertical vorticities in the circulation water pump chambers increased and hence the vortex occurrence potential would be greatly increased. It was found by performing hydraulic model experiments that the velocity distribution near the bottom in the inlet of the circulation water pump chambers was highly non-uniform while the velocity distribution near the water surface was nearly uniform. To reduce the non-uniformity in the velocity distribution, triangular flow deflectors were devised. The installation of the flow deflectors in the inlet of circulation water pump chambers was successfully to reduce velocity non-uniformities and to remove flow reversal problems.

A Simulation on the Two-Phase Flow Characteristics in Gas Bubble Driven Circulation Systems (Gas Bubble Driven Circulation Systems에서의 이상유동 특성의 시뮬레이션)

  • 최청렬
    • Journal of the Korea Society for Simulation
    • /
    • v.7 no.2
    • /
    • pp.17-32
    • /
    • 1998
  • The flow fields in Gas Bubble Driven Circulation Systems were numerically analyzed. In various gas flow rate and bubble size, the flow characteristics were predicted. Eulerian-Eulerian approach was used for the formulation of both the continuous and dispersed phases. The modification of the general purpose computer program PHOENICS code was employed to predict the mean flow fields, turbulent characteristics, gas dispersion, volume fraction. The predicted shows very satisfactory agreement with experimental results for all regions of ladle. The results are of interest in the design and operation of wide variety of material processing.

  • PDF