• Title/Summary/Keyword: Circulating water channel

Search Result 173, Processing Time 0.018 seconds

PIV Measurements of Wake behind a KRISO 3600TEU Container Ship Model (PIV를 이용한 KRISO 3600TEU 컨테이너선모형선의 반류 측정 및 해석)

  • Sang-Joon Lee;Min-Seok Koh;Choung-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.48-56
    • /
    • 2002
  • The flow characteristics around KRISO 3600TEU container ship model have been experimentally investigated in a circulating water channel. The instantaneous velocity vectors were measured using 2-frame PIV measurement system. The mean velocity fields and turbulent statistics including turbulent kinetic energy and vorticity were obtained by ensemble-averaging 400 instantaneous velocity fields. The free stream velocity was fixed at 0.6m/s and the corresponding Reynolds number was $9{\times}10^5$. The test sections were divided into two regions, three transverse sections of the wake region(Station -0.5767, -1, -3) and five longitudinal sections of the wake((Z/(B/2)=0, 0.1, 0.2, 0.4, 0.6). In the wake region, large-scale longitudinal vortices of nearly same strength are symmetric with respect to the wake centerline and a relatively weak secondary vortex is formed near the waterline. With going downstream, the strength of longitudinal vortex is decreased and the wake region expands.

Flow Resistance of Plane Nettings for Net Cages (우리 그물용 평면 그물감의 유수저항)

  • KIM Tae-Ho;KIM Dae-An;RYU Cheong-Ro
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.34 no.3
    • /
    • pp.254-259
    • /
    • 2001
  • In order to make clear the resistance of plane nettings u,sed widely in constructing net cages, the resistance R taken by $R=kSU^2$, where S was the wall area of nettings, U the flow velocity, and k the resistance coefficient, was measured in a circulating water channel by using nylon Raschel nettings and PE trawler-knotted nettings coated with anti-fouling paint or not and then the properties of coefficient k were investigated. The mesh size L and the angle $\phi$ between two adjacent bars was given by the function of Reynolds number ${\lambda}U/v$ in the region of ${\lambda}U/v<180$, i. e., $$k=350(\frac{\lambda U}{v})^{-0.25}$$.where $\lambda$ was the representative size of nettings expressed as $$\lambda=\frac{{\pi}d^2}{2L\;sin\;2{\phi}}$$On the other hand, the coefficient k was almost fixed between 92 and 102 ($kg{\cdot}s^2/m^4$) in the region of ${\lambda}U/v{\geq}180$ and varied according to the ratio $S_n/S$ of the total area $S_n$ of nettings projected to the plane perpendicular to the water flow to the wall area S of nettings, i.e., it was given by $$k=98.6(\frac{S_n}{S})^{1.19}$$ regardless of the coating of paint.

  • PDF

A Study on Improvement for Fishing Gear and Method of Pound Net - I - Net Shapes of the Commerical Net in the Flow - (정치망 어구어법의 개발에 관한 연구-I - 현용어구의 흐름에 대한 형상 변화 -)

  • Yun, Il-Bu;Lee, Ju-Hee;Kwon, Byeong-Guk;Cho, Young-Bok;Yoo, Jae-Bum;Kim, Seong-Hun;Kim, Boo-Young
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.4
    • /
    • pp.268-281
    • /
    • 2004
  • A study was carried out in order to estimate the deformation of the pound net according to the current by the model test in the circulating water channel. The tension of the frame rope and the variation of net shape were measured to investigate the deforming of the model pound net in the flow. The results are obtained as follows; 1. The experimental equation between tensions (R) of the frame rope and velocity (ν)was found to be R=$19.58v^{1.98}$($r^2$=0.98) in case of the upperward flow with fish court net and R=$26.90v^{1.72}$($r^2$=0.95)at the upperward flow with bag net according to the velocity from 0.0m/s to 0.6m/s, respectively. 2. As the variation of flow speed inside of the model net was gradually decreased according as which is passed through netting panels, in case of the upperward flow with fish court net, the flow speed was about 70% of initial flow speed at 0.1m/s, 60% at 0.2m/s, 50% at 0.3m/s and 40% 0.4~0.6m/s at the measurement point(h) inside of the first bag net, respectively. In case of the upperward flow with bag net, as the flow speed was steeply decreased according as which if passed through the second bag net, it was 30~60% of the initial flow speed and was 20~30% inside of the first bag net and was about 10~20% inside of the inclined passage net. 3. In case of the upperward flow with fish court net, the variation of deformed angle of fish court net was from 0$^{\circ}$ to 70$^{\circ}$and that of inclined passage net was from 0$^{\circ}$ to 63$^{\circ}$and that of the second bag net was from 0$^{\circ}$ to 47$^{\circ}$ . 4. In case of the upperward flow with fish court net, the variation of deformed angle of the second bag net was changed from 0$^{\circ}$ to 70$^{\circ}$and that of the inclined passage net was from 0$^{\circ}$ to 55$^{\circ}$ and that of the fish court net was from 0$^{\circ}$ to 50$^{\circ}$. The depth ratio of the first bag net was changed from 0% to 35% and that of the second bag net was from 0% to 20% and that of the inclined passage net was from 0% to 35%. In the flow speed 0.5m/s, the inclined passage net was raised up to the entry of the bag net and then prevented it more over 90%. 5. To be increased the opening volume of pound net, it needs to attach the added weight outside of the fish court net, inclined passage net and bag net. At the same time, it needs to adjust the tension of the twine for maintenance of the shape.