• Title/Summary/Keyword: Circulating flow rate

Search Result 102, Processing Time 0.026 seconds

Quantitative and qualitative analysis of the flow field development through T99 draft tube caused by optimized inlet velocity profiles

  • Galvan, Sergio;Reggio, Marcelo;Guibault, Francois;Solorio, Gildardo
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.4
    • /
    • pp.283-293
    • /
    • 2015
  • The effect of the inlet swirling flow in a hydraulic turbine draft tube is a very complex phenomenon, which has been extensively investigated both theoretically and experimentally. In fact, the finding of the optimal flow distribution at the draft tube inlet in order to get the best performance has remained a challenge. Thus, attempting to answer this question, it was assumed that through an automatic optimization process a Genetic Algorithm would be able to manage a parameterized inlet velocity profile in order to achieve the best flow field for a particular draft tube. As a result of the optimization process, it was possible to obtain different draft-tube flow structures generated by the automatic manipulation of parameterized inlet velocity profiles. Thus, this work develops a qualitative and quantitative analysis of these new draft tube flow field structures provoked by the redesigned inlet velocity profiles. The comparisons among the different flow fields obtained clearly illustrate the importance of the flow uniformity at the end of the conduit. Another important aspect has been the elimination of the re-circulating flow area which used to promote an adverse pressure gradient in the cone, deteriorating the pressure recovery effect. Thanks to the evolutionary optimization strategy, it has been possible to demonstrate that the optimized inlet velocity profile can suppress or mitigate, at least numerically, the undesirable draft tube flow characteristics. Finally, since there is only a single swirl number for which the objective function has been minimized, the energy loss factor might be slightly affected by the flow rate if the same relation of the axial-tangential velocity components is maintained, which makes it possible to scale the inlet velocity field to different operating points.

CFD Analysis for Spiral-Jacketed Thermal Storage Tank in Solar Heating Systems (태양열 시스템에 적용된 나선재킷형 축열조의 CFD 해석)

  • Nam, Jin-Hyun;Kim, Min-Cheol;Kim, Charn-Jung;Hong, Hi-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.645-653
    • /
    • 2008
  • Spiral-jacketed thermal storage tanks can greatly simplify solar heating systems while maintaining the thermal performance at a similar level as conventional systems with an external heat exchanger. Proper design of the spiral-jacket flow path is essential to make the most of solar energy, and thus to maximize the thermal performance. In the present work, computational fluid dynamics (CFD) analysis was carried out for a spiral-jacketed storage tank installed in a solar heating demonstration system. The results of the CFD analysis showed a good agreement with experimentally determined thermal performance indices such as the acquired heat, collector efficiency, and mixed temperature in the storage tank. This verified CFD modelling approach can be a useful design tool in optimizing the shape of spiral-jacket flow path and the flow rate of circulating fluid for better performance.

Modeling for the Work of Heart and Development of the WOH Medical device (심장운동부하 모델링과 의료장비 개발)

  • Roh, Hyung-Woon;Suh, Sang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.501-504
    • /
    • 2006
  • The estimation of the work of heart can be treated as one of the most important parameters for determining the amount of circulating blood needed for harmonious metabolism in the human body. By monitoring the work of heart, one can detect increased work load of heart and start the treatment at the early stage of CHF. Thus it is necessary to estimate the work of heart. The contractility of the left ventricle, the second important parameter for representing the motion of heart, can be estimated through information on the work of heart. In this study, the modified Windkessel model, which has been used for a measure of vascular hemodynamic impedance parameters, was adapted to estimate the work of heart.

  • PDF

Development and performance evaluation of a cryogenic blower for HTS magnets

  • Kwon, Yonghyun;Mun, Jeongmin;Lee, Jaehwan;Seo, Geonghang;Kim, Dongmin;Lee, Changhyeong;Sim, Kideok;Kim, Seokho
    • Progress in Superconductivity and Cryogenics
    • /
    • v.22 no.4
    • /
    • pp.57-61
    • /
    • 2020
  • Cooling by gas helium circulation can be used for various HTS (high temperature superconductor) magnets operating at 20~40 K, and a cryogenic blower is an essential device for circulating gas helium in the cooling system. The performance of the cryogenic blower is determined by various design parameters such as the impeller diameter, the blade number, the vane angle, the volute cross-sectional area, and the rotating speed. The trailing edge angle and the height of impeller vane are also key design factors in determining the blower performance. This study describes the design, fabrication and performance evaluation of cryogenic blower to produce a flow rate of 30 g/s at 5 bar, 35 K gas helium. The impeller shape is designed using a specific speed/specific diameter diagram and CFD analysis. After the fabrication of the cryogenic blower, a test equipment is also developed using a GM cryocooler. The measured flow rates and the pressure differences are compared with the design values at various rotating speeds and the results show a good agreement. Isentropic efficiency is also evaluated using the measured pressures and temperatures.

An experimental study on the thermal entrance lengths for viscoelastic polymer solutions in turbulent tube flow (점탄성 특성을 가진 폴리머용액의 난류유동 열적입구길이에 관한 실험적 연구)

  • 유상신;황태성;엄정섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1189-1196
    • /
    • 1988
  • Thermal entrance lengths of turbulent tube flow for viscoelastic polymer solutions are investigated experimentally in the recirculating flow system with tubes of inside diameters 8.5mm(L/D=710) and 10.3mm(L/D=1158), respectively. In the present system, the hydrodynamic and thermal boundary layers develop simultaneously from the beginning of the test section. To provide the boundary condition of constant heat flux at the wall, the test tubes are heated directly by electricity. The polymer solution used in the current study is 1000 wppm aqueous solution of polyacrylamide(Separan AP-273). The apparent viscosity of the polymer solutions circulating in the flow system are measured by the capillary tube viscometer at regular time intervals. Thermal entrance lengths vary due to the rate of degradation. The entrance lengths of degraded polymer solutions are about 500~600 times the diameter. However, the entrance lengths of fresh polymer solutions are greater than the lengths of the test tubes used in this study suggesting that thermal entrance lengths for viscoelastic polymer solutions are greater than 1100 tube times the diameters. Friction factor is almost insensitive to the degradation, but the heat transfer $j_{H}$-factor is affected seriously by degradation. Based on the present experimental data of fresh solutions a correlation for the heat transfer $j_{H}$-factor is presented.ted.

Solid Circulation Characteristics of Oxygen Carrier for Chemical Looping Combustion System at Ambient Temperature and Pressure (케미컬루핑 연소시스템을 위한 산소전달입자의 상온-상압 고체순환특성)

  • YOON, JOOYOUNG;KIM, HANA;KIM, JUNGHWAN;LEE, DOYEON;BAEK, JEOM-IN;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.384-391
    • /
    • 2017
  • Effects of operating variables on solid circulation rate were measured and discussed using two-interconnected circulating fluidized bed system at ambient temperature and pressure. OCN 706-1100 particles were used as oxygen carrier. The measured solid circulation rates increased as the lower loop seal gas flow rates and the solid height in the fuel reactor increased. Suitable operating conditions to avoid choking of the air reactor were confirmed. Continuous long-term operations of steady-state solid circulation were also demonstrated at two different conditions based on the operating window.

Process Suggestion and HAZOP Analysis for CQ4 and Q2O in Nuclear Fusion Exhaust Gas (핵융합 배가스 중 CQ4와 Q2O 처리공정 제안 및 HAZOP 분석)

  • Jung, Woo-Chan;Jung, Pil-Kap;Kim, Joung-Won;Moon, Hung-Man;Chang, Min-Ho;Yun, Sei-Hun;Woo, In-Sung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.169-175
    • /
    • 2018
  • This study deals with a process for the recovery of hydrogen isotopes from methane ($CQ_4$) and water ($Q_2O$) containing tritium in the nuclear fusion exhaust gas (Q is Hydrogen, Deuterium, Tritium). Steam Methane Reforming and Water Gas Shift reactions are used to convert $CQ_4$ and $Q_2O$ to $Q_2$ and the produced $Q_2$ is recovered by the subsequent Pd membrane. In this study, one circulation loop consisting of catalytic reactor, Pd membrane, and circulation pump was applied to recover H components from $CH_4$ and $H_2O$, one of $CQ_4$ and $Q_2O$. The conversion of $CH_4$ and $H_2O$ was measured by varying the catalytic reaction temperature and the circulating flow rate. $CH_4$ conversion was 99% or more at the catalytic reaction temperature of $650^{\circ}C$ and the circulating flow rate of 2.0 L/min. $H_2O$ conversion was 96% or more at the catalytic reaction temperature of $375^{\circ}C$ and the circulating flow rate of 1.8 L/min. In addition, the amount of $CQ_4$ generated by Korean Demonstration Fusion Power Plant (K-DEMO) in the future was predicted. Then, the treatment process for the $CQ_4$ was proposed and HAZOP (hazard and operability) analysis was conducted to identify the risk factors and operation problems of the process.

Internal Flow and Evaporation Characteristic inside a Water Droplet on a Vertical Vibrating Hydrophobic Surface (수직 진동하는 소수성 표면 위 액적의 내부유동 및 증발특성 연구)

  • Kim, Hun;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.7
    • /
    • pp.579-589
    • /
    • 2015
  • This study aims to understand the internal flow and the evaporation characteristics of a deionized water droplet subjected to vertical forced vibrations. To predict and evaluate its resonance frequency, the theories of Lamb, Strani, and Sabetta have been applied. To visualize the precise mode, shape, and internal flow inside a droplet, the experiment utilizes a combination of a high-speed camera, macro lens, and continuous laser. As a result, a water droplet on a hydrophobic surface has its typical shape at each mode, and complicated vortices are observed inside the droplet. In particular, large symmetrical flow streams are generated along the vertical axis at each mode, with a large circulating movement from the bottom to the top and then to the triple contact line along the droplet surface. In addition, a bifurcation-shaped flow pattern is formed at modes 2 and 4, whereas a large ellipsoid-shape flow pattern forms at modes 6 and 8. Mode 4 has the fastest internal flow speed and evaporation rate, followed by modes 8 then 6, with 2 having the slowest of these properties. Each mode has the fastest evaporation rate amongst its neighboring frequencies. Finally, the droplet evaporation under vertical vibration would lead to more rapid evaporation, particularly for mode 4.

Design Optimization of Two-Way Pump Casing through Flow Analysis (양방향 펌프의 유동 해석을 통한 펌프 케이싱의 최적설계)

  • Kim, Dong-Hwi;Noh, Yoojeong;Lim, O-Kaung;Choi, Eun-Ho;Choi, Ju Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.2
    • /
    • pp.79-85
    • /
    • 2018
  • A two-way pump can reduce costs by draining and circulating water out and into the drum of the washing machine using a single motor whereas a conventional one-way pump uses two motors for doing the same function. However, when the water is drained through the drainage outlet in the two-way pump casing, a backward or inhalation flow occurs and the water flows to the circulation outlet. Likewise, when the water is circulated, the backward flow or inhalation makes the water flow to the drainage outlet. In this study, design optimization of the two-way pump casing is performed to maximize its performance while improving backward flow and inhalation occurring inside of the pump casing. For this, design variables of the pump casing that mainly affect the performance of the pump such as flow rate and torque of the motor were selected through the analysis of mean. Using response surface models for the performances, the ratio of the flow rate to the torque was maximized with satisfying the constraints for the back flow and inhalation through design optimization.

Performance Analysis of Ground Heat Exchanger in Combined Well and Open-Closed Loops Geothermal (CWG) System (밀폐형과 개방형이 결합된 복합지열시스템의 지중열교환기 성능 분석)

  • Park, Youngyun;Song, Jae-Yong;Lee, Geun-Chun;Kim, Ki-Joon;Mok, Jong-Koo;Park, Yu-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.5
    • /
    • pp.23-29
    • /
    • 2017
  • This study was conducted to evaluate performance of geothermal heat exchanger (GHE) in the combined well and open-closed loops geothermal (CWG) systems. The CWG systems were designed to combine open loop geothermal heat pumps and closed loop geothermal heat pumps for high energy efficiency. GHE of the CWG systems could be installed at pumping wells for agricultural usage. To get optimal heat exchange capacity of GHE of the CWG systems, 4 GHEs with various materials and apertures were tested at laboratory scale. Polyethylene (PE) and stainless steel (STS) were selected as GHE materials. The maximum heat exchange capacity of GHEs were estimated to be in the range of 33.0~104 kcal/min. The heat exchange capacity of STS GHEs was 2.4~3.2 times higher than that of PE GHE. The optimal cross section area of GHE and flow rate of circulating water of GHE were estimated to be $2,500mm^2$ and 113 L/min, respectively. For more complicated GHE of the CWG systems, it is necessary to evaluate GHEs at various scales.