• Title/Summary/Keyword: Circular-tube

Search Result 555, Processing Time 0.024 seconds

Study on the response of circular thin plate under low velocity impact

  • Babaei, Hashem;Mostofi, Tohid Mirzababaie;Alitavoli, Majid
    • Geomechanics and Engineering
    • /
    • v.9 no.2
    • /
    • pp.207-218
    • /
    • 2015
  • In this paper, forming of fully clamped circular plate by using low velocity impact system has been investigated. This system consists of liquid shock tube and gravity drop hammer. A series of test on mild steel and aluminum alloy plates has been done. The effect of varying both impact load and the plate material on the deflection are described. This paper also presents a simple model to prediction of mid-point deflection of circular plate by using input-output experimental data. In this way, singular value decomposition (SVD) method is used in conjunction with dimensionless number incorporated in such complex process. The results of obtained model have very good agreement with experimental data and it provides a way of studying and understanding the plastic deformation of impact loads.

Study of the effect of varying shapes of holes in energy absorption characteristics on aluminium circular windowed tubes under quasi-static loading

  • Baaskaran, N;Ponappa, K;Shankar, S
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.153-168
    • /
    • 2019
  • In this paper, energy absorption characteristics of circular windowed tubes with different section shapes (circular, ellipse, square, hexagon, polygon and pentagon) are investigated numerically and experimentally. The tube possesses the same material, thickness, height, volume and average cross sectional area which are subjected under axial and oblique quasi-static loading conditions. Numerical model was constructed with FE code ABAQUS/Explicit, the obtained outcome of simulation is in good matching with the experimental data. The energy absorbed, specific energy absorption, crash force efficiency, peak and mean loads along with the collapse modes with their initiation point of simple and windowed tubes were evaluated. The technique for order of preference by similarity ideal solution (TOPSIS) approach was employed for assessing their overall crushing performances. The obtained results confirm that efficacy of crash force indicators have improved by introducing windows and tubes with pentagonal and circular windows achieves the maximum ranking about 0.528 and 0.517, it clearly reveals the above are best window shapes.

Structural Behavior of Beam-to-Column Connections of Circular CFT Structures Improving Concrete Filling (충전성을 개선한 원형 CFT구조의 기둥-보 접합부 구조적 거동)

  • Park, Min-Soo;Kim, Hee-Dong;Lee, Myung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.6
    • /
    • pp.737-745
    • /
    • 2011
  • A concrete-filled tube is a concrete-filled steel tube structure. The steel tube confines the concrete to increase the compressive strength, and the concrete contains the buckling of the tube. CFT structures require a diaphragm to prevent buckling of steel at connections. An outer diaphragm has better concrete filling than a through diaphragm due to a large bore, but being larger than the through diagram, it has poorer constructability and cooperation with building equipment. In this study, a CFT structure that uses different types of diaphragms in its upper and lower connections to improve the concrete filling was tested and analyzed via the FEM program. The building structure had a floor slab that was unified with the upper diaphragm, so the outer diaphragm was placed at the upper bound. Moreover, the through diaphragm was placed at the lower connection to avoid obstruction from building equipment. The CFT structure with the improved concrete filling showed the same structural behavior as the CFT structure with the use of the same type of diaphragms at the upper and lower connections.

Axial capacity of reactive powder concrete filled steel tube columns with two load conditions

  • Wang, Qiuwei;Shi, Qingxuan;Xu, Zhaodong;He, Hanxin
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 2019
  • Reactive powder concrete (RPC) is a type of ultra-high strength concrete that has a relatively high brittleness. However, its ductility can be improved by confinement, and the use of RPC in composite RPC filled steel tube columns has become an important subject of research in recent years. This paper aims to present an experimental study of axial capacity calculation of RPC filled circular steel tube columns. Twenty short columns under axial compression were tested and information on their failure patterns, deformation performance, confinement mechanism and load capacity were presented. The effects of load conditions, diameter-thickness ratio and compressive strength of RPC on the axial behavior were further discussed. The experimental results show that: (1) specimens display drum-shaped failure or shear failure respectively with different confinement coefficients, and the load capacity of most specimens increases after the peak load; (2) the steel tube only provides lateral confinement in the elastic-plastic stage for fully loaded specimens, while the confinement effect from steel tube initials at the set of loading for partially loaded specimens; (3) confinement increases the load capacity of specimens by 3% to 38%, and this increase is more pronounced as the confinement coefficient becomes larger; (4) the residual capacity-to-ultimate capacity ratio is larger than 0.75 for test specimens, thus identifying the composite columns have good ductility. The working mechanism and force model of the composite columns were analyzed, and based on the twin-shear unified strength theory, calculation methods of axial capacity for columns with two load conditions were established.

Seismic Performance Evaluation of SRC Column by Quasi-Static Test (준정적 실험에 의한 SRC 합성교각의 내진성능 평가)

  • Han, Jung-Hoon;Park, Chang-Kyu;Shim, Chang-Su;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.85-94
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is the most important factor. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcements such as hoop ties closely. Using core steel composite columns is useful as one of the reinforcing RC columns. In this paper, quasi-static tests on concrete encased composite columns with single core steel or multiple steel elements were performed to investigate the seismic performance of the composite columns. Eight concrete-encased composite specimens were fabricated. The cross-sections of these specimens are composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcements, type and number of encased steel member. Through the tests, it was evaluated the ductility of SRC composite specimens. It has become clear from the test results that encased steel elements makes the deformation capacity of the columns to be larger. The displacement ductility and lateral strength of specimen with concrete-encased circular tube were indicated the biggest value.

Axial Load Performance of Circular CFT Columns with Concrete Encasement (콘크리트피복 원형충전강관 기둥의 압축성능)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • An experimental study was performed to investigate the axial-flexural load-carrying capacity of concrete-encased and-filled steel tube (CEFT) columns. To restrain local buckling of longitudinal bars and to prevent premature failure of the thin concrete encasement, the use of U-cross ties was proposed. Five eccentrically loaded columns were tested by monotonic compression. The test parameters were axial-load eccentricity, spacing of ties, and the use of concrete encasement. Although early cracking occurred in the thin concrete encasement, the maximum axial loads of the CEFT specimens generally agreed with the strengths predicted considering the full contribution of the concrete encasement. Further, due to the effect of the circular steel tube, the CEFT columns exhibited significant ductility. The applicability of current design codes to the CEFT columns was evaluated in terms of axial-flexural strength and flexural stiffness.

Structural Behavior of Circular Tube Column Bases under the Axial Load (축압축력을 받는 노출형 원형강관 주각의 거동)

  • Lee, Tae Kyu;Lee, Myung Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.4 s.71
    • /
    • pp.471-478
    • /
    • 2004
  • The object of this study is to experimentally investigate the structural behavior of circular tube column bases under axial loads and to ascertain the test results using elastic numerical analysis. A literature survey was conducted on the AISC design code and a few design formulae. Tests were axially conducted under compressive loads. The thickness of the base plate was the main parameter of the specimens. Nine base plate specimens were used, with thicknesses ranging from 9 millimeters to 35 millimeters. The relationship of the load and the vertical displacement of base plates and the relationship of the load and the strain of the base plates were tested. Ansys version 6.1 was used for the elastic numerical analysis, to ascertain the test results. he test results and the elastic numerical analysis results will be used to suggest design formulae for inelastic numerical analyses that will be conducted later on.

A study on the heat transfer characteristics of swirling flow in a circular sectioned $180^{\circ}C$bend with uniform heat flux (균일 열플럭스가 있는 $180^{\circ}C$ 원형단면 곡관의 선회유동 열전달특성 연구)

  • Lee, Sang-Bae;Gwon, Gi-Rin;Jang, Tae-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.615-627
    • /
    • 1997
  • An experiment was performed to local heat transfer coefficient and Nusselt number in the circular duct of 180.deg. bend for Re=6*10$^{4}$, 8*10$^{4}$ and 1*10$^{5}$ at swirling flow and non-swirling flow conditions. The test tube with circular section was made by stainless which has curvature ratio 9.4. The wall of test tube was heated directly by electrical power to 3.51 kw and swirling motion of air was produced by a tangential inlet to the pipe axis at the 180 degree. Measurements of local wall temperatures and bulk mean temperature of air are made at four circumferential positions in the 16 stations. The wall temperatures show particularly reduced distribution curve at bend for non-swirling flow but this effect does not appear for swirling flow. Nusselt number distributions for swirling flow which was calculated from the measured wall and bulk temperatures were higher than that of non-swirling flow. Average Nusselt number of swirling flow increased about 90 ~ 100% than that of non-swirling flow whole through the test tube. The Nu/N $u_{DB}$ values at the station of 90.deg. for non-swirling flow and swirling flow are respectively about 2.5 and 4.8 at Re=6*10$^{4}$. Also that is good agreement with Said's result for non-swirling flow. flow.

Numerical Study of Detonation Wave Structure and Dynamics in a Circular Tube (원형관 내 데토네이션 파 구조 및 동적 특성 수치 연구)

  • Cho, Deok-Rae;Kim, Jong-Kwan;Jang, Keun-Jin;Choi, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.278-281
    • /
    • 2012
  • Numerical studies were performed to investigate the three-dimensional front structure and dynamics features of detonation wave propagating in a circular tube such as Pulse Detonation Engine (PDE). By carrying out a series of parametric study using one step irreversible Arrhenius kinetics model, mechanisms of the three-dimensional front structure were investigated for two-, three-, four and six-cell mode detonations. A comparison with two-dimensional results, the effects of slapping transverse waves in radial direction were confirmed. In the all muti-cell modes, the detonation front structures and smoked-records on the wall are formed by the propagation of transverse waves along the wall in clockwise and counter-clockwise while the slapping move in radial direction. And the strength of reflected waves on the curved wall is changed by the multi-dimensional confinement effect.

  • PDF

Experimental and numerical analysis of seismic behaviour for recycled aggregate concrete filled circular steel tube frames

  • Xianggang Zhang;Gaoqiang Zhou;Xuyan Liu;Yuhui Fan;Ercong Meng;Junna Yang;Yajun Huang
    • Computers and Concrete
    • /
    • v.31 no.6
    • /
    • pp.537-543
    • /
    • 2023
  • To study the seismic behavior of recycled aggregate concrete filled circular steel tube (RACFCST) frames, the seismic behavior experiment of RACFCST frame was carried out to measure the hysteresis curve, skeleton curve and other seismic behavior indexes. Moreover, based on the experimental study, a feasible numerical analysis model was established to analyze the finite element parameters of 8 RACFCST frame specimens, and the influence of different variation parameters on the seismic behavior index for RACFCST frame was revealed. The results showed that the skeleton curve of specimens under different axial compression ratios were divided into three stages: elastic stage, elastic-plastic stage and descending stage, and the descending stage was relatively stable, indicating that the specimen had stronger deformation capacity in the descending stage. With the increase of axial compression ratio, the peak bearing capacity of all specimens reduced gradually, and the reduction was less than 5%. With the decrease of beam-column linear stiffness ratio, the peak bearing capacity decreased gradually. With the decrease of yield bending moment ratio of beam-column, the peak bearing capacity decreased gradually, and the decreasing rate of peak bearing capacity gradually accelerated. In addition, compared with the axial compression ratio, the beam-column linear stiffness ratio and the yield bending moment ratio of beam-column had a more significant influence on the peak bearing capacity of RACFCST frame.