• Title/Summary/Keyword: Circular tubes

Search Result 237, Processing Time 0.026 seconds

Axial compressive residual ultimate strength of circular tube after lateral collision

  • Li, Ruoxuan;Yanagihara, Daisuke;Yoshikawa, Takao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.396-408
    • /
    • 2019
  • The tubes which are applied in jacket platforms as the supporting structure might be collided by supply vessels. Such kind of impact will lead to plastic deformation on tube members. As a result, the ultimate strength of tubes will decrease compared to that of intact ones. In order to make a decision on whether to repair or replace the members, it is crucial to know the residual strength of the tubes. After being damaged by lateral impact, the simply supported tubes will definitely loss a certain extent of load carrying capacity under uniform axial compression. Therefore, in this paper, the relationship between the residual ultimate strength of the damaged circular tube by collision and the energy dissipation due to lateral impact is investigated. The influences of several parameters, such as the length, diameter and thickness of the tube and the impact energy, on the reduction of ultimate strength are investigated. A series of numerical simulations are performed using nonlinear FEA software LS-DYNA. Based on simulation results, a non-dimensional parameter is introduced to represent the degree of damage of various size of tubes after collision impact. By applying this non-dimensional parameter, a simplified formula has been derived to describe the relationship between axial compressive residual ultimate and lateral impact energy and tube parameters. Finally, by comparing with the allowable compressive stress proposed in API rules (RP2A-WSD A P I, 2000), the critical damage of tube due to collision impact to be repaired is proposed.

A vision algorithm for finding the centers of steam generator tubes using the generalized symmetry transform (일반화 대칭변환을 이용한 원전 증기발생기 전열관 중심인식 비젼 알고리즘)

  • 장태인;곽귀일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1367-1370
    • /
    • 1997
  • This paper presents a vision algorithm for finding the centers of steam generator tubes using the generalized symmetry transform, which is used for ECT(Eddy Current Test) of steam generator tubes in nuclear power plants. The geometrical properties of the image representing steam generator tubes shows that they have amost circular or somewhat elliptic appearances and each tube has strong symmetry about its center. So we apply the generalized symmetry transform to finding centers of steam geneator tubes. But applying the generalized symmetry transform itself without any modification gives difficulties in obtaining the exact centers of steam generator tubes. But applying the generalized symmetry transform itself without any modification gives difficulties in obtaining the exact centers of tubes due to the shadow effect generated by the local light installed inside steam generator. Therefore we make the generalized symmetry transform modified, which uses a modified phase weight function in getting the symmetry magnitude in order to overcome the misleading effect by the local light. The experimental results indicate that the proposed vision algorithm efficiently recongnizes centers of steam generator tubes.

  • PDF

Efficiency of stiffening plates in fabricated concrete-filled tubes under monotonic compression

  • Albareda-Valls, Albert;Carreras, Jordi Maristany
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1023-1044
    • /
    • 2015
  • Concrete-filled tubes (CFT), formed by an outer steel tube filled with plain or reinforced concrete inside, have been increasingly used these recent decades as columns or beam-columns, especially for tall buildings in seismic areas due to their excellent structural response. This improved behavior is derived from the effect of confinement provided by the tube, since the compressive strength of concrete increases when being subjected to hydrostatic pressure. In circular CFTs under compression, the whole tube is uniformly tensioned due to the radial expansion of concrete. Contrarily, in rectangular and square-shaped CFTs, the lateral flanges become subjected to in-plane bending derived from this volumetric expansion, and this fact implies a reduction of the confinement effect of the core. This study presents a numerical analysis of different configurations of CFT stub columns with inner stiffening plates, limited to the study of the influence of these plates on the compressive behavior without eccentricity. The final purpose is to evaluate the efficiency in terms of strength and ductility of introducing stiffeners into circular and square CFT sections under large deformation axial loading.

Pure bending creep of SUS 304 stainless steel tubes

  • Lee, Kuo-Long;Pan, Wen-Fung
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.461-474
    • /
    • 2002
  • This paper presents the experimental and theoretical results of SUS 304 stainless tubes with different diameter-to-thickness ratio (D/t ratio) subjected to pure bending creep. Pure bending creep occurs when a circular tube is bent to a desired moment and held at that moment for a period of time. It was found that the magnitudes of the creep curvature and ovalization of tube cross-section increase faster with a higher hold moment than that with a lower one. Due to continuously increasing curvature, the circular tubes eventually buckle. Finally, a theoretical form was proposed in this study so that it can be used to describe the relationship between the creep curvature and time. Theoretical simulations are compared with the experimental test data, showing that good agreement between the experimental and theoretical results has been achieved.

Study on Pressure drop characteristics in HTS cable core with two flow passages

  • Lee, Jun-Kyoung;Kim, Seok-Ho;Kim, Hae-Joon;Cho, Jeon-Wook
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.4
    • /
    • pp.33-37
    • /
    • 2008
  • The main objective of this study is to identify the pressure drop characteristics of coolant flow passages of 154kV/1GVA High Temperature Superconducting (HTS) power cable, experimentally. The passages were consisted of two parts, the one is the circular path with spiral ribs in the core to cool the cable conductor layer and the other is annular path with spirally corrugated outer wall to cool the shield layer. Thus the experiments to acquire the pressure drop data were performed with two types of circular spiral tubes and eight types of the concentric annuli in various range of Reynolds number. The pressure drops in the core tubes and the annuli were much higher than those in the tubes with smooth surface. Therefore, modified correlations to present the experimental results in each flow passage were suggested.

Effects of Reinforced Fibers on Energy Absorption Characteristics under Quasi-static Compressive Loading of Composite Circular Tubes (강화섬유에 따른 준정적 하중하에서 복합소재 원형튜브의 에너지 흡수특성 평가 연구)

  • Kim, Jung-Seok;Yoon, Huk-Jin;Lee, Ho-Sun;Choi, Kyung-Hoon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • In this study, the energy absorption capabilities and failure modes of four different kinds of circular tubes made of carbon, Kevlar and carbon-Kevlar hybrid composites with epoxy resin have been evaluated. In order to achieve these goals, these tubes were fabricated with unidirectional prepregs and compressive tests were conducted for the tubes under 10mm/min loading speed. From the test results, carbon/epoxy tubes were collapsed by brittle fracturing mode and showed the best energy absorption capabilities, while Kevlar/epoxy tubes were crushed by local buckling mode and worst. The hybrid [$90_C/0_K$] tubes were failed in a local bucking mode and showed good post crushing integrity, whereas [$90_K/0_C$] tubes were failed in a lamina bending mode and bad post crushing integrity.

Numerical Analysis for the Air-Side Convective Heat Transfer Characteristics in a Compact Heat Exchanger with Circular Tubes and Continuous Plate Fins (원형관-평판휜 형상의 밀집형 열교환기 내 공기 측대류열전달특성에 대한 수치해석)

  • Moh, Jeong-Hah;Lee, Sang-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.12
    • /
    • pp.994-1001
    • /
    • 2007
  • Numerical analysis has been carried out to investigate air-side convective heat transfer characteristics in a compact heat exchanger with circular tubes and continuous plate fins. Simulation results such as air velocity and temperature distributions are presented, and heat transfer coefficients are compared with previous experimental correlations. Three models of standard and RNG $k-{\varepsilon}$, and Reynolds stress are applied for turbulence model applicability. Predicted heat transfer coefficient from the models of standard and RNG $k-{\varepsilon}$ are very close to those of the heat transfer correlations while there are relatively large difference, more than 17 percentage in the result from the Reynolds stress model. From the calculated results a correlation for Colburn j factor in the compact heat exchanger system is suggested.

Experimental study on circular CFST short columns with intermittently welded stiffeners

  • Thomas, Job;Sandeep, T.N.
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.659-667
    • /
    • 2018
  • This paper deals with the experimental study on strength the strength and deformation characteristics of short circular Concrete Filled Steel Tube (CFST) columns. Effect of vertical stiffeners on the behavior of the column is studied under axial compressive loading. Intermittently welded vertical stiffeners are used to strengthen the tubes. Stiffeners are attached to the inner surface of tube by welding through pre drilled holes on the tube. The variable of the study is the spacing of the weld between stiffeners and circular tube. A total of 5 specimens with different weld spacing (60 mm, 75 mm, 100 mm, 150 mm and 350 mm) were prepared and tested. Short CFST columns of height 350 mm, outer tube diameter of 165 mm and thickness of 4.5 mm were used in the study. Concrete of cube compressive strength $41N/mm^2$ and steel tubes with yield strength $310N/mm^2$ are adopted. The test results indicate that the strength and deformation of the circular CFST column is found to be significantly influenced by the weld spacing. The ultimate axial load carrying capacity was found to increase by 11% when the spacing of weld is reduced from 350 mm to 60 mm. The vertical stiffeners are found to effective in enhancing the initial stiffness and ductility of CFST columns. The prediction models were developed for strength and deformation of CFST columns. The prediction is found to be in good agreement with the corresponding test data.

Analytical study of concrete-filled steel tubular stub columns with double inner steel tubes

  • Pouria Ayough;Yu-Hang Wang;Zainah Ibrahim
    • Steel and Composite Structures
    • /
    • v.47 no.5
    • /
    • pp.645-661
    • /
    • 2023
  • Concrete-filled steel tubular columns with double inner steel tubes (CFST-DIST) are a novel type of composite members developed from conventional concrete-filled steel tubular (CFST) columns. This paper investigates the structural performance of circular CFST-DIST stub columns using nonlinear finite element (FE) analysis. A numerical model was developed and verified against existing experimental test results. The validated model was then used to compare circular CFST-DIST stub columns' behavior with their concrete-filled double skin steel tubular (CFDST) and CFST counterparts. A parametric study was performed to ascertain the effects of geometric and material properties on the axial performance of CFST-DISTs. The FE results and the available test data were used to assess the accuracy of the European and American design regulations in predicting the axial compressive capacity of circular CFST-DIST stub columns. Finally, a new design model was recommended for estimating the compressive capacity of CFST-DISTs. Results clarified that circular CFST-DIST columns had the advantages of their CFST counterparts but with better ductility and strength-to-weight ratio. Besides, the investigated design codes led to conservative predictions of the compressive capacity of circular CFST-DIST columns.

A Study on Energy Absorption Characteristics of Lightweight Structural Member according to Stacking Conditions (적층구성 변화에 따른 경량화 구조부재의 에너지 흡수 특성)

  • Choi, Ju-Ho;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.241-245
    • /
    • 2012
  • In this study, one type of circular shaped composite tube was used, combined with reinforcing foam and without foam. Furthermore, CFRP (Carbon Fiber Reinforced Plastic) circular member manufactured from CFRP prepreg sheet for lightweight design. CFRP is an anisotropic material which is the most widely adapted lightweight structural member. The crashworthy behavior of circular composite material tubes subjected to static axial compression under same conditions is reported in this paper. The collapse mode during the failure process were observed and analyzed. The behavior of polymeric foams to the tubes crashworthiness were also investigated.