DOI QR코드

DOI QR Code

Analytical study of concrete-filled steel tubular stub columns with double inner steel tubes

  • Pouria Ayough (School of Civil Engineering, Chongqing University) ;
  • Yu-Hang Wang (School of Civil Engineering, Chongqing University) ;
  • Zainah Ibrahim (Department of Civil Engineering, Faculty of Engineering, University of Malaya)
  • 투고 : 2022.11.27
  • 심사 : 2023.04.20
  • 발행 : 2023.06.10

초록

Concrete-filled steel tubular columns with double inner steel tubes (CFST-DIST) are a novel type of composite members developed from conventional concrete-filled steel tubular (CFST) columns. This paper investigates the structural performance of circular CFST-DIST stub columns using nonlinear finite element (FE) analysis. A numerical model was developed and verified against existing experimental test results. The validated model was then used to compare circular CFST-DIST stub columns' behavior with their concrete-filled double skin steel tubular (CFDST) and CFST counterparts. A parametric study was performed to ascertain the effects of geometric and material properties on the axial performance of CFST-DISTs. The FE results and the available test data were used to assess the accuracy of the European and American design regulations in predicting the axial compressive capacity of circular CFST-DIST stub columns. Finally, a new design model was recommended for estimating the compressive capacity of CFST-DISTs. Results clarified that circular CFST-DIST columns had the advantages of their CFST counterparts but with better ductility and strength-to-weight ratio. Besides, the investigated design codes led to conservative predictions of the compressive capacity of circular CFST-DIST columns.

키워드

과제정보

This research was funded by a grant from the National Natural Science Foundation of China (52278144). The authors would like to acknowledge the support.

참고문헌

  1. Abu-Shamah, A. and Allouzi, R. (2020), "Numerical investigation on the response of circular double-skin concrete-filled steel tubular slender columns subjected to biaxial bending", Steel Compos. Struct., 37(5), 533-549. https://doi.org/10.12989/scs.2020.37.5.533.
  2. ACI 318 (2002), Building code requirements for structural concrete and commentary (ACI 318-02), American Concrete Institute; Detroit, MI, United States of America.
  3. AISC360-16 (2016), Specification for structural steel buildings, American Institution of Steel Construction; Chicago, IL, United States of America.
  4. Ayough, P., Ibrahim, Z., Sulong, N.H.R. and Hsiao, P.-C. (2021a), "The effects of cross-sectional shapes on the axial performance of concrete-filled steel tube columns," J. Constr. Steel Res., 176, 106424. https://doi.org/10.1016/j.jcsr.2020.106424.
  5. Ayough, P., Ibrahim, Z., Sulong, N.H.R., Hsiao, P.-C. and Elchalakani, M. (2021b), "Numerical analysis of square concrete-filled double skin steel tubular columns with rubberized concrete", Struct., 32, 1026-1047. https://doi.org/10.1016/j.istruc.2021.03.054.
  6. Ayough, P., Ramli Sulong, N.H. and Ibrahim, Z. (2020a), "Analysis and review of concrete-filled double skin steel tubes under compression", Thin-Wall. Struct., 148, 106495. https://doi.org/10.1016/j.tws.2019.106495.
  7. Ayough, P., Ramli Sulong, N.H., Ibrahim, Z. and Hsiao, P.-C. (2020b), "Nonlinear analysis of square concrete-filled double-skin steel tubular columns under axial compression", Eng. Struct., 216, 110678. https://doi.org/10.1016/j.engstruct.2020.110678.
  8. Dai, X. and Lam, D. (2010), "Numerical modelling of the axial compressive behaviour of short concrete-filled elliptical steel columns", J. Constr. Steel Res., 66(7), 931-942. https://doi.org/10.1016/j.jcsr.2010.02.003.
  9. Duarte, A.P.C., Silva, B.A., Silvestre, N., de Brito, J., Julio, E. and Castro, J.M. (2016), "Finite element modelling of short steel tubes filled with rubberized concrete", Compos. Struct., 150, 28-40. https://doi.org/10.1016/j.compstruct.2016.04.048.
  10. Elchalakani, M., Ayough, P. and Yang, B. (2022), Single Skin and Double Skin Concrete Filled Tubular Structures: Analysis and Design, Woodhead Publishing, Cambridge, MA, United States of America.
  11. Elchalakani, M., Zhao, X.-L. and Grzebieta, R. (2002), "Tests on concrete filled double-skin (CHS outer and SHS inner) composite short columns under axial compression", Thin-Wall. Struct., 40(5), 415-441. https://doi.org/10.1016/S0263-8231(02)00009-5.
  12. Eurocode 4 (2004), Design of composite steel and concrete structures-Part 1.1: General rules and rules for buildings, European Committee for Standardization; Brussels, Belgium.
  13. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
  14. Guo, Z., Chen, Y., Wang, Y. and Jiang, M. (2020), "Experimental study on square concrete-filled double skin steel tubular short columns", Thin-Wall. Struct., 156, 107017. https://doi.org/10.1016/j.tws.2020.107017.
  15. Han, L.-H. (2001), "Tests and mechanics model for concrete-filled SHS stub columns, columns and beam-columns", Steel Compos. Struct., 1, 51-74. https://doi.org/10.12989/SCS.2001.1.1.051.
  16. Han, L.-H., Tao, Z., Huang, H. and Zhao, X.-L. (2004), "Concrete-filled double skin (SHS outer and CHS inner) steel tubular beam-columns", Thin-Wall. Struct., 42(9), 1329-1355. https://doi.org/10.1016/j.tws.2004.03.017.
  17. Hassanein, M.F., Elchalakani, M., Karrech, A., Patel, V.I. and Daher, E. (2018a), "Finite element modelling of concrete-filled double-skin short compression members with CHS outer and SHS inner tubes", Marine Struct., 61, 85-99. https://doi.org/10.1016/j.marstruc.2018.05.002.
  18. Hassanein, M.F. and Patel, V.I. (2018b), "Round-ended rectangular concrete-filled steel tubular short columns: FE investigation under axial compression", J. Constr. Steel Res., 140, 222-236. https://doi.org/10.1016/j.jcsr.2017.10.030.
  19. Hassanein, M.F., Patel, V.I., Elchalakani, M. and Thai, H.-T. (2018c), "Finite element analysis of large diameter high strength octagonal CFST short columns", Thin-Wall. Struct., 123, 467-482. https://doi.org/10.1016/j.tws.2017.11.007.
  20. Huang, C., Yeh, Y.-K., Liu, G.-Y., Hu, H.-T., Tsai, K., Weng, Y. and Wu, M.-H. (2002), "Axial load behavior of stiffened concrete-filled steel columns", J. Struct. Eng., 128(9), 1222-1230. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:9(1222).
  21. Huang, H., Han, L.-H., Tao, Z. and Zhao, X.-L. (2010), "Analytical behaviour of concrete-filled double skin steel tubular (CFDST) stub columns", J. Constr. Steel Res., 66(4), 542-555. https://doi.org/10.1016/j.jcsr.2009.09.014.
  22. Liang, Q.Q. (2009), "Performance-based analysis of concrete-filled steel tubular beam-columns, Part I: Theory and algorithms", J. Constr. Steel Res., 65(2), 363-372. https://doi.org/10.1016/j.jcsr.2008.03.007.
  23. Liang, Q.Q. and Fragomeni, S. (2009), "Nonlinear analysis of circular concrete-filled steel tubular short columns under axial loading", J. Constr. Steel Res., 65(12), 2186-2196. https://doi.org/10.1016/j.jcsr.2009.06.015.
  24. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  25. Pagoulatou, M., Sheehan, T., Dai, X.H. and Lam, D. (2014), "Finite element analysis on the capacity of circular concrete-filled double-skin steel tubular (CFDST) stub columns", Eng. Struct., 72, 102-112. https://doi.org/10.1016/j.engstruct.2014.04.039.
  26. Patel, V.I., Uy, B., Prajwal, K. and Aslani, F. (2016), "Confined concrete model of circular, elliptical and octagonal CFST short columns", Steel Compos. Struct., 22(3), 497-520. https://doi.org/10.12989/scs.2016.22.3.497.
  27. Pi, T., Chen, Y., He, K., Han, S. and Wan, J. (2019), "Study on circular CFST stub columns with double inner square steel tubes", Thin-Wall. Struct., 140, 195-208. https://doi.org/10.1016/j.tws.2019.03.028.
  28. Pons, D., Espinos, A., Albero, V. and Romero, M.L. (2018), "Numerical study on axially loaded ultra-high strength concrete-filled dual steel columns", Steel Compos. Struct., 26(6), 705-717. https://doi.org/10.12989/scs.2018.26.6.705.
  29. Sadowski, A.J. and Rotter, J.M. (2013), "Solid or shell finite elements to model thick cylindrical tubes and shells under global bending", Int. J. Mech. Sci., 74, 143-153. https://doi.org/10.1016/j.ijmecsci.2013.05.008.
  30. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
  31. Tang, J., Hino, S.-i., Kuroda, I. and Ohta, T. (1996), "Modeling of stress-strain relationships for steel and concrete in concrete filled circular steel tubular columns", Steel Constru. Eng., 3(11), 35-46. https://doi.org/10.11273/jssc1994.3.11_35.
  32. Tao, Z., Uy, B., Liao, F.-Y. and Han, L.-H. (2011), "Nonlinear analysis of concrete-filled square stainless steel stub columns under axial compression", J. Constr. Steel Res., 67(11), 1719-1732. https://doi.org/10.1016/j.jcsr.2011.04.012.
  33. Uenaka, K. (2016), "CFDST stub columns having outer circular and inner square sections under compression", J. Constr. Steel Res., 120, 1-7. https://doi.org/10.1016/j.jcsr.2015.12.005.
  34. Wang, F.-C., Han, L.-H. and Li, W. (2018), "Analytical behavior of CFDST stub columns with external stainless steel tubes under axial compression", Thin-Wall. Struct., 127, 756-768. https://doi.org/10.1016/j.tws.2018.02.021.
  35. Wang, Y., Chen, P., Liu, C. and Zhang, Y. (2017), "Size effect of circular concrete-filled steel tubular short columns subjected to axial compression", Thin-Wall. Struct., 120, 397-407. https://doi.org/10.1016/j.tws.2017.09.010.
  36. Younas, S., Li, D., Hamed, E. and Uy, B. (2021), "Behaviour of high strength concrete-filled short steel tubes under sustained loading", Steel Compos. Struct., 39(2), 159-170. https://doi.org/10.12989/scs.2021.39.2.159.
  37. Zhang, J.-C., Liu, X.-Y., Zeng, L., Du, G.-F. and Xiao, J.-H. (2021), "Seismic behavior of cross-shaped concrete-filled steel tubular columns", Steel Compos. Struct., 40(3), 405-420. https://doi.org/10.12989/scs.2021.40.3.405.
  38. Zhao, X.-L., Han, B. and Grzebieta, R.H. (2002), "Plastic mechanism analysis of concrete-filled double-skin (SHS inner and SHS outer) stub columns", Thin-Wall. Struct., 40(10), 815-833. https://doi.org/10.1016/S0263-8231(02)00030-7.
  39. Zhou, F. and Xu, W. (2016), "Cyclic loading tests on concrete-filled double-skin (SHS outer and CHS inner) stainless steel tubular beam-columns", Eng. Struct., 127, 304-318. https://doi.org/10.1016/j.engstruct.2016.09.003.